Arithmetic Strength of

Curves

Ivan Aidun UW-Madison **Def:** the *strength* of a homog. poly. $f \in k[x_0, ..., x_n]$ is the least *r* such that we can write

$$f = g_1h_1 + g_2h_2 + \dots + g_rh_r$$

with $\deg(g_i), \deg(h_i) \ge 1$.

The *collective strength* of a collection of poly.s $\{f_1, \ldots, f_k\}$ is the minimum strength of a homog. linear combo. of the f_i .

E.g., over $\mathbb C$

$$str(x^{2} + y^{2}) = 1 \qquad str(x^{2} + y^{2} + z^{2}) = 2$$
$$str(x^{2} + y^{2} + z^{2}, 2xy + z^{2}) = 1$$

We always have $str(f) \le n+1$

Observation: (Ellenberg) if the hypersurface V(f) has a rational point, then $\operatorname{str}(f) \leq n$.

 \Rightarrow "*f* has bounded strength" generalizes "V(f) has a rational point".

Questions:

1. Fix *n*, *d*, and *r*. What is the density of deg. *d* poly.s in *n*+1 var.s with $str \leq r$ over \mathbb{Q} , \mathbb{R} , \mathbb{F}_p , \mathbb{Q}_p , ...?

2. Do those poly.s satisfy a Hasse principle?

Results so far: for 2 quadrics in 3 variables, collective strength is controlled by the base locus over \overline{k} . Related to Bhargava's work on quartic discriminants.

- Over any field, $str(f_1, f_2) \leq 2$.
- Over \mathbb{R} , 50% strength 2, 50% strength 1.
- Over ${\mathbb Q}$, 100% strength 2.
- Over \mathbb{F}_q , about 7/12 strength 2. Exactly:

 $\frac{7 \cdot \# \operatorname{PGL}_3(\mathbb{F}_q)}{12 \cdot \# \operatorname{Gr}(2,6)_q}$

• Over \mathbb{Q}_p , similar proportion for large p, different for p = 2, 3.

Further directions:

- pairs of quadrics in higher dimension
- pairs of cubic curves
- analogs over function fields

Question: is this related to \mathbb{A}^1 -homotopy theory?

