Isogeny relations in products of families of elliptic curves

Luca Ferrigno

Università degli studi Roma Tre

The Mordell conjecture 100 years later July 9, 2024 Let $\mathcal{E}_{\lambda} \to Y(2) = \mathbb{P}^1 \setminus \{0, 1, \infty\}$ be the Legendre family of elliptic curves, i.e. the family with generic fiber

$$E_{\lambda}: Y^2 Z = X(X - Z)(X - \lambda Z)$$

and let $\mathcal{E}_{\lambda}^{n} \to Y(2)$ be its *n*-fold fibered power. Consider a curve $C \subseteq \mathcal{E}_{\lambda}^{n} \times \mathcal{E}_{\mu}^{n} \to Y(2) \times Y(2)$, then each point $\mathbf{c} \in C(\mathbb{C})$ corresponds to *m* points $P_{1}(\mathbf{c}), \ldots, P_{m}(\mathbf{c})$ on $E_{\lambda(\mathbf{c})}$ and *n* points $Q_{1}(\mathbf{c}), \ldots, Q_{n}(\mathbf{c})$ on $E_{\mu(\mathbf{c})}$. Suppose also that the points P_{i} and Q_{j} are linearly independent on *C*,

that is, there is non non-trivial relation of the form

$$a_1P_1 + \ldots + a_mP_m = O$$
 or $b_1Q_1 + \ldots + b_nQ_n = O$

with $a_i \in \text{End}(\mathcal{E}_{\lambda}|_C)$ and $b_j \in \text{End}(\mathcal{E}_{\mu}|_C)$, that holds generically on C.

2/4

Some known results

Let $C \subseteq \mathcal{E}^n_{\lambda} \times \mathcal{E}^n_{\mu} \to Y(2) \times Y(2)$ be an irreducible curve, defined over $\overline{\mathbb{Q}}$, with λ and μ not both constant. Suppose moreover that, on C, E_{λ} and E_{μ} are not generically isogenous and that the points P_i and Q_j are generically independent.

Theorem (Masser-Zannier, 2014)

Let $C \subseteq \mathcal{E}_{\lambda} \times \mathcal{E}_{\mu} \to Y(2) \times Y(2)$ as above. Then there are at most finitely many $\mathbf{c} \in C(\mathbb{C})$ such that $P(\mathbf{c}) \in E_{\lambda(\mathbf{c})}$ and $Q(\mathbf{c}) \in E_{\mu(\mathbf{c})}$ are both torsion.

Theorem (Barroero-Capuano, 2017)

Let $C \subseteq \mathcal{E}^n_{\lambda} \times \mathcal{E}^n_{\mu} \to Y(2) \times Y(2)$ as above. Then there are at most finitely many points $\mathbf{c} \in C(\mathbb{C})$ such that there exist $a_1, \ldots, a_m \in \operatorname{End} (\mathcal{E}_{\lambda}|_C)$ and $b_1, \ldots, b_n \in \operatorname{End} (\mathcal{E}_{\mu}|_C)$ for which

 $a_1P_1(\mathbf{c}) + \ldots + a_mP_m(\mathbf{c}) = O$ and $b_1Q_1(\mathbf{c}) + \ldots + b_nQ_n(\mathbf{c}) = O$.

Theorem (F., 2024)

Let $C \subseteq \mathcal{E}^m \times \mathcal{E}^n \to Y(2) \times Y(2)$ be a asymmetric irreducible curve defined over $\overline{\mathbb{Q}}$ with λ and μ not both constant. Suppose moreover that E_{λ} and E_{μ} are not generically isogenous and that no relation of the form

$$a_1P_1 + \ldots + a_mP_m = O$$
 or $b_1Q_1 + \ldots + b_nQ_n = O$

holds identically on C. Then, there are at most finitely many $\mathbf{c} \in C(\mathbb{C})$ such that there exists an isogeny $\phi : E_{\mu(\mathbf{c})} \to E_{\lambda(\mathbf{c})}$ and there exists $(a_1, \ldots, a_m, b_1, \ldots, b_n) \in \operatorname{End}(E_{\lambda(\mathbf{c})})^{m+n}$ not all zero with

$$a_1P_1(\mathbf{c}) + \ldots + a_mP_m(\mathbf{c}) + b_1\phi\left(Q_1(\mathbf{c})\right) + \ldots + b_n\phi\left(Q_n(\mathbf{c})\right) = O.$$