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General setting

Let Eλ → Y (2) = P1 \ {0, 1,∞} be the Legendre family of elliptic curves,
i.e. the family with generic fiber

Eλ : Y 2Z = X(X − Z)(X − λZ)

and let En
λ → Y (2) be its n-fold fibered power.

Consider a curve C ⊆ En
λ × En

µ → Y (2)× Y (2), then each point
c ∈ C(C) corresponds to m points P1(c), . . . , Pm(c) on Eλ(c) and n
points Q1(c), . . . , Qn(c) on Eµ(c).
Suppose also that the points Pi and Qj are linearly independent on C,
that is, there is non non-trivial relation of the form

a1P1 + . . .+ amPm = O or b1Q1 + . . .+ bnQn = O

with ai ∈ End (Eλ|C) and bj ∈ End (Eµ|C), that holds generically on C.
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Some known results

Let C ⊆ En
λ × En

µ → Y (2)× Y (2) be an irreducible curve, defined over Q,
with λ and µ not both constant. Suppose moreover that, on C, Eλ and
Eµ are not generically isogenous and that the points Pi and Qj are
generically independent.

Theorem (Masser-Zannier, 2014)

Let C ⊆ Eλ ×Eµ → Y (2)× Y (2) as above. Then there are at most finitely
many c ∈ C(C) such that P (c) ∈ Eλ(c) and Q(c) ∈ Eµ(c) are both
torsion.

Theorem (Barroero-Capuano, 2017)

Let C ⊆ En
λ × En

µ → Y (2)× Y (2) as above. Then there are at most
finitely many points c ∈ C(C) such that there exist
a1, . . . , am ∈ End (Eλ|C) and b1, . . . , bn ∈ End (Eµ|C) for which

a1P1(c) + . . .+ amPm(c) = O and b1Q1(c) + . . .+ bnQn(c) = O.
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Isogeny relations in products of families

Theorem (F., 2024)

Let C ⊆ Em × En → Y (2)× Y (2) be a asymmetric irreducible curve
defined over Q with λ and µ not both constant. Suppose moreover that
Eλ and Eµ are not generically isogenous and that no relation of the form

a1P1 + . . .+ amPm = O or b1Q1 + . . .+ bnQn = O

holds identically on C. Then, there are at most finitely many c ∈ C(C)
such that there exists an isogeny ϕ : Eµ(c) → Eλ(c) and there exists
(a1, . . . , am, b1, . . . , bn) ∈ End(Eλ(c))

m+n not all zero with

a1P1(c) + . . .+ amPm(c) + b1ϕ (Q1(c)) + . . .+ bnϕ (Qn(c)) = O.
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