Caltech

How do generic properties spread?

Families of isogenous elliptic curves ordered by height

Jerry Yu Fu

California Institute of Technology

July 9, 2024

Caltech Table of Contents

Jerry Yu Fu

The General Question
(1) The General Question
(2) Families of isogenous elliptic curves ordered by height
(3) Relate to the uniform boundedness conjecture

Callech The General Question

\star Given a family $\mathcal{X} \rightarrow \mathcal{S}$ of algebraic varieties over a field k, with \mathcal{S} an irreducible scheme. Let \mathcal{X}_{η} be its generic fiber.

\star Question:

* What type of properties of $\mathcal{X} \eta$ extend to other fibers? [e.g., smoothness, (geometrically) simple, cohomology, Picard rank...]
* How/In which way do these properties extend? Can we get a quantitative estimation for the 'exotic' points?
\star Hilbert irreducibility theorem: for a number field k, a dominant map $X \rightarrow \mathbb{P}^{n}$ defined over k which is generically of degree d, the fiber over 'most' k-rational points $t \in \mathbb{P}^{n}(k)$ is a finite set of Galois-conjugate points where G acts freely transitively.
\star Quantitative estimates for size of the complement(S. Cohen):

$$
\left|M_{k}(B)\right|=O\left(B^{(n-1 / 2) d}(\log B)^{\gamma}\right)
$$

with $\gamma<1,[k: \mathbb{Q}]=d$.

Caltech Table of Contents

The General Question
(1) The General Question

2 Families of isogenous elliptic curves ordered by height
(3) Relate to the uniform boundedness conjecture

Caltech Families of isogenous elliptic curves ordered by height

* Define ι to be the map:

$$
\iota: X(1) \times X(1) \supset C \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}
$$

such that ι is the composition of j-invariant map and the Segre embedding. \star Let $H\left(P_{t}\right)$ be the projective height of $\iota\left(P_{t}\right) \in \mathbb{P}^{3}$.

* Let $S(B)$ be the set of specializations $t \in C(K)$ where there is an $\overline{\mathbb{Q}}$-isogeny between E_{t} and E_{t}^{\prime} with height at most B.

Theorem (Fu, 2023)

Let K be a number field of degree d_{K}. let C be a rational curve over K isomorphic to \mathbb{P}^{1} which parametrizes a one-dimensional family of pairs of elliptic curves $\left(E, E^{\prime}\right)$. Let $\left(E_{t}, E_{t}^{\prime}\right)$ be the generic fiber of this family over $K(t)$, and suppose that there exists no $K(t)$-isogeny between E_{t} and E_{t}^{\prime}. Let $d=\operatorname{deg} \iota^{*} \mathcal{O}_{\mathbb{P}^{3}}(1)$ be the degree of the parameter family C defined with respect to ι. We have

$$
|S(B)| \lesssim K d^{4}(\log B)^{6} .
$$

Caltech Table of Contents

(2) Families of isogenous elliptic curves ordered by height
(3) Relate to the uniform boundedness conjecture

Caltech Relate to the uniform boundedness conjecture

\star Let $Z(C ; B)(K)=\left\{x \in C \cap \bigcup_{n} X_{0}(n)(K) \mid H(x) \leq B\right\}$ Our main theorem can be reformulated as: $|Z(C ; B)(K)| \lesssim K d^{4}(\log B)^{6}$
\star Uniform boundedness(Merel,1994): Suppose $[K: \mathbb{Q}]=d$, we have $\left|E(K)_{\text {tors }}\right| \leq B(d)$.
\star (Parent, 1999) $E / K,[K: \mathbb{Q}]=d, E\left[p^{n}\right](K) \neq O$. Then

$$
p^{n} \leq \begin{cases}129\left(3^{d}-1\right)(3 d)^{6} & \text { if } p=2 \\ 65\left(5^{d}-1\right)(2 d)^{6} & \text { if } p=3 \\ 65\left(3^{d}-1\right)(2 d)^{6} & \text { if } p \geq 5\end{cases}
$$

$\star d=1$, Mazur. $B(2)=24$ vs Parent's bound $\Rightarrow 6.3 \times 10^{39}$ Not sharp!
\star Our theorem describes the distribution of K-rational points on $\bigcup_{n} X_{0}(n)$ cut out by C, in terms of height, over arbitrary number field K.

Caltech Question

* Can we remove the dependence on C ? Or at least the degree of C ?
\star Suppose C is a curve defined over $\overline{\mathbb{Q}}$. Is $Z(C ; B)(\bar{Q})$ finite? If this is the case, can we get an upper bound of $Z(C ; B)(\bar{Q})$ in terms of B ?

