Caltech

Jerry Yu Fu

The General Question

Families of isogenous elliptic curve ordered by height

Relate to the uniform boundedness conjecture

How do generic properties spread? Families of isogenous elliptic curves ordered by height

Jerry Yu Fu

California Institute of Technology

July 9, 2024

Caltech Table of Contents

Jerry Yu Fu

The General Question

Families of isogenous elliptic curves ordered by height

Relate to the uniform boundedness conjecture

1 The General Question

Families of isogenous elliptic curves ordered by height

B Relate to the uniform boundedness conjecture

Caltech The General Question

Jerry Yu Fu

The General Question

Families of isogenous elliptic curves ordered by height

Relate to the uniform boundedness conjecture

- * Given a family $\mathcal{X} \to \mathcal{S}$ of algebraic varieties over a field k, with \mathcal{S} an irreducible scheme. Let \mathcal{X}_{η} be its generic fiber.
- \star Question:
 - * What type of properties of X_{η} extend to other fibers? [e.g., smoothness, (geometrically) simple, cohomology, Picard rank...]
 - * How/In which way do these properties extend? Can we get a quantitative estimation for the 'exotic' points?
- * Hilbert irreducibility theorem: for a number field k, a dominant map $X \to \mathbb{P}^n$ defined over k which is generically of degree d, the fiber over 'most' k-rational points $t \in \mathbb{P}^n(k)$ is a finite set of Galois-conjugate points where G acts freely transitively.
- \star Quantitative estimates for size of the complement(S. Cohen):

$$|M_k(B)| = O\left(B^{(n-1/2)d}(\log B)^{\gamma}\right)$$

with $\gamma < 1$, $[k : \mathbb{Q}] = d$.

Caltech Table of Contents

Jerry Yu Fu

The General Question

Families of isogenous elliptic curves ordered by height

Relate to the uniform boundedness conjecture

1 The General Question

2 Families of isogenous elliptic curves ordered by height

B Relate to the uniform boundedness conjecture

Caltech Families of isogenous elliptic curves ordered by height

 \star Define ι to be the map:

Jerry Yu Fu

The General Question

Families of isogenous elliptic curves ordered by height

Relate to the uniform boundedness conjecture $\iota:X(1) imes X(1) \supset C
ightarrow \mathbb{P}^1 imes \mathbb{P}^1 \hookrightarrow \mathbb{P}^3.$

such that ι is the composition of *j*-invariant map and the Segre embedding. * Let $H(P_t)$ be the projective height of $\iota(P_t) \in \mathbb{P}^3$.

* Let S(B) be the set of specializations $t \in C(K)$ where there is an $\overline{\mathbb{Q}}$ -isogeny between E_t and E'_t with height at most B.

Theorem (Fu, 2023)

Let K be a number field of degree d_K . let C be a rational curve over K isomorphic to \mathbb{P}^1 which parametrizes a one-dimensional family of pairs of elliptic curves (E, E'). Let (E_t, E'_t) be the generic fiber of this family over K(t), and suppose that there exists no $\overline{K(t)}$ -isogeny between E_t and E'_t . Let $d = \deg \iota^* \mathcal{O}_{\mathbb{P}^3}(1)$ be the degree of the parameter family C defined with respect to ι . We have

 $|S(B)| \lesssim_{\mathcal{K}} d^4 (\log B)^6.$

Caltech Table of Contents

Jerry Yu Fu

The General Question

Families of isogenous elliptic curve ordered by height

Relate to the uniform boundedness conjecture

1 The General Question

Families of isogenous elliptic curves ordered by height

3 Relate to the uniform boundedness conjecture

Caltech Relate to the uniform boundedness conjecture

Jerry Yu Fu

The General Question

Families of isogenous elliptic curve ordered by height

Relate to the uniform boundedness conjecture

- * Let $Z(C; B)(K) = \{x \in C \cap \bigcup_n X_0(n)(K) \mid H(x) \le B\}$ Our main theorem can be reformulated as: $|Z(C; B)(K)| \lesssim_K d^4(\log B)^6$
- * Uniform boundedness(Merel,1994): Suppose $[K : \mathbb{Q}] = d$, we have $|E(K)_{tors}| \leq B(d)$.
- \star (Parent, 1999) E/K, $[K:\mathbb{Q}] = d$, $E[p^n](K) \neq O$. Then

$$p^{n} \leq \begin{cases} 129 \left(3^{d} - 1 \right) (3d)^{6} & \text{ if } p = 2, \\ 65 \left(5^{d} - 1 \right) (2d)^{6} & \text{ if } p = 3, \\ 65 \left(3^{d} - 1 \right) (2d)^{6} & \text{ if } p \geq 5. \end{cases}$$

* d = 1, Mazur. B(2) = 24 vs Parent's bound $\Rightarrow 6.3 \times 10^{39}$ Not sharp!

* Our theorem describes the distribution of K-rational points on $\bigcup_n X_0(n)$ cut out by C, in terms of height, over arbitrary number field K.

Caltech Question

Jerry Yu Fu

The General Question

- Families of isogenous elliptic curves ordered by height
- Relate to the uniform boundedness conjecture

- \star Can we remove the dependence on C? Or at least the degree of C?
- * Suppose C is a curve defined over $\overline{\mathbb{Q}}$. Is $Z(C; B)(\overline{Q})$ finite? If this is the case, can we get an upper bound of $Z(C; B)(\overline{Q})$ in terms of B?