Towards a classification of p^{2}-discriminant ideal twins over number fields

Asimina S. Hamakiotes joint with Alyson Deines, Andreea lorga,
Changningphaabi Namoijam, Manami Roy, and Lori Watson (Women in Numbers 6)
University of Connecticut

The Mordell conjecture 100 years later, July 8-12, 2024

Background and Motivation

Definition

Let K be a number field and let E and E^{\prime} be elliptic curves defined over K that are not K-isomorphic. We say that E and E^{\prime} are discriminant ideal twins if they have the same discriminant ideal and the same conductor.

If, in addition, for each prime \mathfrak{p} there exist \mathfrak{p}-minimal models for E and E^{\prime} defined over \mathcal{O}_{K} such that $\Delta_{\mathfrak{p}}=\Delta_{\mathfrak{p}}^{\prime}$, then we say E and E^{\prime} are discriminant twins.

Two isogenous elliptic curves have the same conductor.
Question: When can two isogenous non-isomorphic elliptic curves defined over a number field have the same minimal discriminant ideal?

Previous Work

Question: When can two isogenous non-isomorphic elliptic curves defined over a number field have the same minimal discriminant ideal?

- (Deines, 2018) Over \mathbb{Q}, there are only finitely many semistable (i.e., multiplicative at each prime) isogenous discriminant twins.
- (Barrios, Brucal-Hallare, Deines, Harris, Roy, 2024) The authors provide a classification of all p-isogenous discriminant ideal twins over number fields where $p \in\{2,3,5,7,13\}$, i.e., where $X_{0}(p)$ has genus 0 .
- If E_{1} and E_{2} are n-isogenous elliptic curves over K, then there are $t \in K$ and $d \in \mathcal{O}_{K}$ such that E_{i} is K-isomorphic to $C_{n, i}(t, d): y^{2}=x^{3}+d^{2} A_{n, i}(t) x+d^{3} B_{n, i}(t)$.

Main Theorems

Theorem (Deines, H., lorga, Namoijam, Roy, Watson, 2024)

Let E_{1} and E_{3} be p^{2}-isogenous elliptic curves over a number field K such that their j-invariants are not equal. Suppose further that $E_{i} \cong C_{p^{2}, i}(t, d)$, where $t \in \mathcal{O}_{K}$ and $d \in \mathcal{O}_{K} /\left(\mathcal{O}_{K}\right)^{2}$. Then E_{1} and E_{3} are discriminant ideal twins if and only if for each prime \mathfrak{p} of \mathcal{O}_{K},

- $p=3$: we have $\nu_{\mathfrak{p}}(t-3)=3 k_{\mathfrak{p}}$ for $0 \leq k_{\mathfrak{p}} \leq \nu_{\mathfrak{p}}(3)$.

The two curves are discriminant twins if and only if t satisfies the above and $(t-3)^{8} \in \mathcal{O}_{K}^{12}$.

- $p=5$: we have $\nu_{\mathfrak{p}}(t-1)=k_{\mathfrak{p}}$ for $0 \leq k_{\mathfrak{p}} \leq \nu_{\mathfrak{p}}(5)$.

The two curves are discriminant twins if t satisfies the above.

Corollary (Deines, H., Iorga, Namoijam, Roy, Watson, 2024)

Up to twists, there are finitely many p^{2}-isogenous discriminant ideal twins over \mathbb{Q}, for odd p for which $X_{0}\left(p^{2}\right)$ has genus 0 .

