Heegner points on $y^2 = x^3 + p$

ARAV V. KARIGHATTAM

The Mordell Conjecture 100 Years Later

Massachusetts Institute of Technology July 8, 2024 1/3

Consider the elliptic curve E_D with equation $y^2 = x^3 + D$. When does this curve have nontorsion rational points?

- Sylvester's problem deals with the case $D = -27k^2$. Here, E_D is isomorphic to the curve $x^3 + y^3 = 2k$.
- Much work has been done to show that there nontrivial rational points on x³ + y³ = k for many integers k. (Satgé (1987), Elkies (1994), and others)
- All of these are *cubic twists* of the curve $y^2 = x^3 + 1$. What about twists of degree 6?

Heegner Points

Let
$$E_D$$
: $y^2 = x^3 + D$ and \widetilde{E}_D : $x^3 + y^3 = D$.
Our main result is the following.

2/3

THEOREM. Let p be a prime congruent to 5 (mod 9), and let $\epsilon = (-1)^{(p-1)/2}$. If $K := \mathbb{Q}(\sqrt[3]{p})$ has odd class number, $E_{\epsilon p}$ has rank 1 and $E_{-\epsilon p}$ has rank 0.

What is the Heegner point construction here? We construct a modular parametrization (X, Y) of level 6 for E_1 from division values of the Weierstrass \wp -function. Look at

$$E_1 \rightarrow E_{-27} \rightarrow \widetilde{E_2} \rightarrow C_{p^2} \rightarrow \widetilde{E_{2p^2}} \rightarrow E_{-27p^4} \rightarrow E_{p^4} \rightarrow E_{\epsilon p}$$

where C_{p^2} is the curve with equation $p^2x^3 + 2y^3 = 1$.

3/3

Nontriviality

Why is this point nontrivial?

The challenge – how do we incorporate the condition that h_K is odd? (This is necessary because E_p can have large rank, but Cassels showed that $\operatorname{rk} E_D + \operatorname{rk} E_{-D} \leq 1$ when $h_{\mathbb{Q}(\sqrt[3]{D})}$ is odd and D is cubefree.)

Our next theorem answers this question.

THEOREM. If *u* is the unique fundamental unit of \mathcal{O}_K greater than 1, $N_{R_{6p}/K}(X(p\omega)+1) = 3^{p+1}u^{3h_K}$.

When $h_{\mathcal{K}}$ is odd, the right hand side is not a square in R_{6p} , so our Heegner point is nontrivial. Moreover, this point is nontrivial in $E_{\epsilon p}(\mathbb{Q})/2E_{\epsilon p}(\mathbb{Q})$, so it is an odd multiple of the generator.

