Heegner points on $y^{2}=x^{3}+p$

Arav V. Karighattam

The Mordell Conjecture 100 Years Later
Massachusetts Institute of Technology
July 8, 2024

Consider the elliptic curve E_{D} with equation $y^{2}=x^{3}+D$. When does this curve have nontorsion rational points?

- Sylvester's problem deals with the case $D=-27 k^{2}$. Here, E_{D} is isomorphic to the curve $x^{3}+y^{3}=2 k$.
- Much work has been done to show that there nontrivial rational points on $x^{3}+y^{3}=k$ for many integers k. (Satgé (1987), Elkies (1994), and others)
- All of these are cubic twists of the curve $y^{2}=x^{3}+1$. What about twists of degree 6 ?

Heegner Points

Let $E_{D}: y^{2}=x^{3}+D$ and $\widetilde{E}_{D}: x^{3}+y^{3}=D$.
Our main result is the following.
THEOREM. Let p be a prime congruent to $5(\bmod 9)$, and let $\epsilon=(-1)^{(p-1) / 2}$. If $K:=\mathbb{Q}(\sqrt[3]{p})$ has odd class number, $E_{\epsilon p}$ has rank 1 and $E_{-\epsilon p}$ has rank 0 .

What is the Heegner point construction here? We construct a modular parametrization (X, Y) of level 6 for E_{1} from division values of the Weierstrass \wp-function. Look at

$$
E_{1} \rightarrow E_{-27} \rightarrow \widetilde{E}_{2} \rightarrow C_{p^{2}} \rightarrow \widetilde{E}_{2 p^{2}} \rightarrow E_{-27 p^{4}} \rightarrow E_{p^{4}} \rightarrow E_{\epsilon p}
$$

where $C_{p^{2}}$ is the curve with equation $p^{2} x^{3}+2 y^{3}=1$.

Nontriviality

Why is this point nontrivial?
The challenge - how do we incorporate the condition that h_{K} is odd? (This is necessary because E_{p} can have large rank, but Cassels showed that rk $E_{D}+\mathrm{rk} E_{-D} \leq 1$ when $h_{\mathbb{Q}(\sqrt[3]{D})}$ is odd and D is cubefree.)
Our next theorem answers this question.
THEOREM. If u is the unique fundamental unit of \mathcal{O}_{K} greater than $1, N_{R_{6 p} / K}(X(p \omega)+1)=3^{p+1} u^{3 h_{K}}$.

When h_{K} is odd, the right hand side is not a square in $R_{6 p}$, so our Heegner point is nontrivial. Moreover, this point is nontrivial in $E_{\epsilon p}(\mathbb{Q}) / 2 E_{\epsilon p}(\mathbb{Q})$, so it is an odd multiple of the generator.

Thank you!

