Cuspidal Subgroups of Modular Jacobians

Elvira Lupoian

University College London

8/7/2024

(4) ∃ ≥ (4) ∃ ≥ (4)

Cuspidal Subgroups

Let $\Gamma \leq SL_2(\mathbb{Z})$ be a finite index subgroup and Y the algebraic curve associated to the quotient $\Gamma \setminus \mathbb{H}$. This curve is compactified by adding finitely many points, known as *cusps*

$$X=Y\cup\{c_1,\ldots,c_n\}.$$

The cuspidal subgroup of X is the subgroup of the Jacobian J of X generated by the cusps

$$C = \langle [c_i - c_j] : 1 \leq i, j \leq n \rangle.$$

Theorem (Manin '72 - Drinfeld '73)

If Γ is a congruence subgroup, C is a finite.

In particular, $C \subset J(K)_{tors}$, where K is the field of definition of the cusps.

When Γ is a congruence subgroup, what is C?

Some Results

Let $p \ge 5$ prime and $\Gamma = \Gamma_0(p)$. The curve $X = X_0(p)$ has two cusps c_1, c_2 , both defined over \mathbb{Q} .

Theorem (Ogg '73) $C = C_0(p) \cong (\mathbb{Z}/N_p\mathbb{Z})$, where N_p is the numerator of (p-1)/12.

Theorem (Mazur '77) $C_0(p) = J_0(\mathbb{Q})_{tors}$.

- rational cuspidal divisor class group of $X_0(N)$ (Yoo '22)
- cuspidal divisor class number, rational divisor class number of $X_1(p)$ (Yu '80, Takagi '92)
- $J_1(p)(\mathbb{Q})_{tors}$ is cuspidal up to 2-torsion (Ohta '13)

ヘロト 人間 ト ヘヨト ヘヨト

3

A Covering of $X_0(p)$

Let p be a prime, $p \equiv 1 \mod 4$ and let $H \subset (\mathbb{Z}/p\mathbb{Z})^*$ be the subgroup of squares. We write $X_H(p)$ for the complete curve corresponding to the congruence subgroup

$$\Gamma_H(p) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{SL}_2(\mathbb{Z}) : a \mod p \in H, c \equiv 0 \mod p \}.$$

The curve $X_H(p)$ has 4 cusps c_1, c_2 (over \mathbb{Q}) and c_3, c_4 (over $\mathbb{Q}(\sqrt{p})$).

Theorem (L., Yoo '24⁺)

•
$$C_H^{\infty}(p) = \langle [c_1 - c_2] \rangle \cong \mathbb{Z}/m_p\mathbb{Z}$$

• $C_H^{\mathbb{Q}}(p) = \langle [c_1 - c_2], [c_1 + c_2 - c_3 - c_4] \rangle \cong \mathbb{Z}/m_p\mathbb{Z} \times \mathbb{Z}/n_p\mathbb{Z}$
• $C_H^{\mathbb{Q}}(p) = C_H(p)(\mathbb{Q})$
• $C_H(p) = \langle [c_1 - c_2], [c_1 - c_3], [c_1 - c_4] \rangle \cong (\mathbb{Z}/m_p\mathbb{Z})^2 \times \mathbb{Z}/n_p\mathbb{Z}$
where $m_p = \frac{p}{2} \sum_{i=0}^{\frac{p-3}{2}} (-1)^i B_2\left(\frac{\alpha^i}{p}\right), B_2(x) = \{x\}^2 - \{x\} + \frac{1}{6}, \alpha \text{ is an integer of order } p - 1$
modulo p and n_p is the numerator of $p - 1/24$.