Cuspidal Subgroups of Modular Jacobians

Elvira Lupoian

University College London
8/7/2024

Cuspidal Subgroups

Let $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ be a finite index subgroup and Y the algebraic curve associated to the quotient $\Gamma \backslash \mathbb{H}$. This curve is compactified by adding finitely many points, known as cusps

$$
X=Y \cup\left\{c_{1}, \ldots, c_{n}\right\} .
$$

The cuspidal subgroup of X is the subgroup of the Jacobian J of X generated by the cusps

$$
C=\left\langle\left[c_{i}-c_{j}\right]: 1 \leq i, j \leq n\right\rangle .
$$

Theorem (Manin '72 - Drinfeld '73)

If Γ is a congruence subgroup, C is a finite.
In particular, $C \subset J(K)_{\text {tors }}$, where K is the field of definition of the cusps.
When Γ is a congruence subgroup, what is C ?

Some Results

Let $p \geq 5$ prime and $\Gamma=\Gamma_{0}(p)$. The curve $X=X_{0}(p)$ has two cusps c_{1}, c_{2}, both defined over \mathbb{Q}.

Theorem (Ogg '73)

$C=C_{0}(p) \cong\left(\mathbb{Z} / N_{p} \mathbb{Z}\right)$, where N_{p} is the numerator of $(p-1) / 12$.

Theorem (Mazur '77)

$C_{0}(p)=J_{0}(\mathbb{Q})_{\text {tors }}$.

- rational cuspidal divisor class group of $X_{0}(N)$ (Yoo '22)
- cuspidal divisor class number, rational divisor class number of $X_{1}(p)(Y u$ '80, Takagi '92)
- $J_{1}(p)(\mathbb{Q})_{\text {tors }}$ is cuspidal up to 2 -torsion (Ohta '13)

A Covering of $X_{0}(p)$

Let p be a prime, $p \equiv 1 \bmod 4$ and let $H \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ be the subgroup of squares. We write $X_{H}(p)$ for the complete curve corresponding to the congruence subgroup

$$
\Gamma_{H}(p)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}): a \bmod p \in H, c \equiv 0 \bmod p\right\} .
$$

The curve $X_{H}(p)$ has 4 cusps $c_{1}, c_{2}(\operatorname{over} \mathbb{Q})$ and $c_{3}, c_{4}(\operatorname{over} \mathbb{Q}(\sqrt{p}))$.

Theorem (L.,Yoo '24+)

- $C_{H}^{\infty}(p)=\left\langle\left[c_{1}-c_{2}\right]\right\rangle \cong \mathbb{Z} / m_{p} \mathbb{Z}$
- $C_{H}^{\mathbb{Q}}(p)=\left\langle\left[c_{1}-c_{2}\right],\left[c_{1}+c_{2}-c_{3}-c_{4}\right]\right\rangle \cong \mathbb{Z} / m_{p} \mathbb{Z} \times \mathbb{Z} / n_{p} \mathbb{Z}$
- $C_{H}^{\mathbb{Q}}(p)=C_{H}(p)(\mathbb{Q})$
- $C_{H}(p)=\left\langle\left[c_{1}-c_{2}\right],\left[c_{1}-c_{3}\right],\left[c_{1}-c_{4}\right]\right\rangle \cong\left(\mathbb{Z} / m_{p} \mathbb{Z}\right)^{2} \times \mathbb{Z} / n_{p} \mathbb{Z}$
where $m_{p}=\frac{p}{2} \sum_{i=0}^{\frac{p-3}{2}}(-1)^{i} B_{2}\left(\frac{\alpha^{i}}{p}\right), B_{2}(x)=\{x\}^{2}-\{x\}+\frac{1}{6}, \alpha$ is an integer of order $p-1$ modulo p and n_{p} is the numerator of $p-1 / 24$.

