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Setting

Let X be a smooth, geometrically integral, projective curve defined over
a field F , with model of X we mean an integral, projective, flat,
2-dimensional scheme over SpecOF with a fixed isomorphism between its
generic fiber and X .

We are interested in the classical modular curves X0(N) for genus g ≥ 2.

Arakelov divisors allow us to define an intersection pairing 〈·, ·〉 on an
arithmetic surface that descends to the quotient with respect to principal
divisors.

There is a canonical Arakelov divisor ω satisfying properties similar to the
ones satisfied by the classical canonical divisor. We are interested in its
self-intersection ω2 := 〈ω, ω〉.

To prove Bogomolov conjecture, Zhang in 1993 introduced a modified
Arakelov divisor ωa, the admissible ω, showing that

ω2 ≥ ω2
a ≥ 0.
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Asymptotic behaviour

Theorem (Dolce, M., 2024)

For the minimal regular model over SpecZ of X0(N) we have:

ω2 ∼ 3g logN, for N → +∞ and (N, 6) = 1.

We have ω2
a = ω2 − r , with r ≥ 0.

Theorem (Michel, Ullmo, 1998)

For the semistable minimal regular model over SpecZ of X0(N), with N
square-free, we have:

r ∼ g/3, for N → +∞ and (N, 6) = 1.

Theorem (Banerjee, Chaudhuri, 2021)

For the stable model over SpecOL of X0(p2), with p prime, we have:

ω2 ∼ 2g log p2,

r ∼ 0,
for p → +∞ and L = Q(p

2
p2−1 , ζp+1).
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Effective Bogomolov

Theorem

Let X be a geometrically connected smooth curve over a field F with
genus g ≥ 2 and Jacobian JX , let ιD0 : X → JX be an embedding of the
curve in its Jacobian and let hNT be the Néron-Tate height on JX . Then:

1 For every ε > 0 and for every degree 1 divisor D0 the set

{x ∈ X (F ) : hNT(ιD0 (x)) < 〈ωa,ωa〉
4(g−1) − ε} is finite.

2 For every ε > 0 and divisor D0 of degree 1 such that D0 − 1
2g−2K is

a torsion point in JX , with K a canonical divisor of X , the set

{x ∈ X (F ) : hNT(ιD0 (x)) < 〈ωa,ωa〉
2(g−1) + ε} is infinite.

For X0(N), with N large enough square-free and coprime with 6, we have:{
x ∈ X0(N)(Q) : hNT(ι∞(x)) < 2

3 logN − ε
}

is finite;{
x ∈ X0(N)(Q) : hNT(ι∞(x)) < 4

3 logN + ε
}

is infinite.

For X0(p2), with p prime large enough, we have:{
x ∈ X0(p2)(Q) : hNT(ι∞(x)) < 1

2 log p2 − ε
}

is finite;{
x ∈ X0(p2)(Q) : hNT(ι∞(x)) < log p2 + ε

}
is infinite.
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