Arakelov canonical divisor and Bogomolov conjecture for modular curves

Pietro Mercuri
a joint work with P. Dolce

Sapienza Università di Roma

The Mordell conjecture 100 years later July 9, 2024

Setting

Let X be a smooth, geometrically integral, projective curve defined over a field F, with model of X we mean an integral, projective, flat, 2-dimensional scheme over $\operatorname{Spec} \mathcal{O}_{F}$ with a fixed isomorphism between its generic fiber and X.
We are interested in the classical modular curves $X_{0}(N)$ for genus $g \geq 2$.
Arakelov divisors allow us to define an intersection pairing $\langle\cdot, \cdot\rangle$ on an arithmetic surface that descends to the quotient with respect to principal divisors.

There is a canonical Arakelov divisor ω satisfying properties similar to the ones satisfied by the classical canonical divisor. We are interested in its self-intersection $\omega^{2}:=\langle\omega, \omega\rangle$.

To prove Bogomolov conjecture, Zhang in 1993 introduced a modified Arakelov divisor ω_{a}, the admissible ω, showing that

$$
\omega^{2} \geq \omega_{a}^{2} \geq 0
$$

Asymptotic behaviour

Theorem (Dolce, M., 2024)

For the minimal regular model over $\operatorname{Spec} \mathbb{Z}$ of $X_{0}(N)$ we have:

$$
\omega^{2} \sim 3 g \log N, \quad \text { for } N \rightarrow+\infty \text { and }(N, 6)=1
$$

We have $\omega_{a}^{2}=\omega^{2}-r$, with $r \geq 0$.

Theorem (Michel, Ullmo, 1998)

For the semistable minimal regular model over $\operatorname{Spec} \mathbb{Z}$ of $X_{0}(N)$, with N square-free, we have:

$$
r \sim g / 3, \quad \text { for } N \rightarrow+\infty \text { and }(N, 6)=1
$$

Theorem (Banerjee, Chaudhuri, 2021)

For the stable model over $\operatorname{Spec} \mathcal{O}_{L}$ of $X_{0}\left(p^{2}\right)$, with p prime, we have:

$$
\begin{aligned}
\omega^{2} & \sim 2 g \log p^{2}, \\
r & \sim 0,
\end{aligned} \text { for } p \rightarrow+\infty \text { and } L=\mathbb{Q}\left(p^{\frac{2}{p^{2}-1}}, \zeta_{p+1}\right) .
$$

Effective Bogomolov

Theorem

Let X be a geometrically connected smooth curve over a field F with genus $g \geq 2$ and Jacobian J_{X}, let $\iota_{D_{0}}: X \rightarrow J_{X}$ be an embedding of the curve in its Jacobian and let $h_{N T}$ be the Néron-Tate height on J_{X}. Then:
(1) For every $\varepsilon>0$ and for every degree 1 divisor D_{0} the set $\left\{x \in X(\bar{F}): h_{N T}\left(\iota_{D_{0}}(x)\right)<\frac{\left\langle\omega_{a}, \omega_{a}\right\rangle}{4(g-1)}-\varepsilon\right\}$ is finite.
(2) For every $\varepsilon>0$ and divisor D_{0} of degree 1 such that $D_{0}-\frac{1}{2 g-2} K$ is a torsion point in J_{X}, with K a canonical divisor of X, the set $\left\{x \in X(\bar{F}): h_{N T}\left(\iota_{D_{0}}(x)\right)<\frac{\left\langle\omega_{a}, \omega_{a}\right\rangle}{2(g-1)}+\varepsilon\right\}$ is infinite.

For $X_{0}(N)$, with N large enough square-free and coprime with 6 , we have:

$$
\begin{array}{ll}
\left\{x \in X_{0}(N)(\overline{\mathbb{Q}}): h_{N T}\left(\iota_{\infty}(x)\right)<\frac{2}{3} \log N-\varepsilon\right\} & \text { is finite; } \\
\left\{x \in X_{0}(N)(\overline{\mathbb{Q}}): h_{N T}\left(\iota_{\infty}(x)\right)<\frac{4}{3} \log N+\varepsilon\right\} & \text { is infinite. }
\end{array}
$$

For $X_{0}\left(p^{2}\right)$, with p prime large enough, we have:

$$
\begin{aligned}
& \left\{x \in X_{0}\left(p^{2}\right)(\overline{\mathbb{Q}}): h_{N T}\left(\iota_{\infty}(x)\right)<\frac{1}{2} \log p^{2}-\varepsilon\right\} \quad \text { is finite; } \\
& \left\{x \in X_{0}\left(p^{2}\right)(\overline{\mathbb{Q}}): h_{N T}\left(\iota_{\infty}(x)\right)<\log p^{2}+\varepsilon\right\} \quad \text { is infinite }
\end{aligned}
$$

