Arakelov canonical divisor and Bogomolov conjecture for modular curves

Pietro Mercuri a joint work with P. Dolce

Sapienza Università di Roma

The Mordell conjecture 100 years later July 9, 2024

Setting

Let X be a smooth, geometrically integral, projective curve defined over a field F, with model of X we mean an integral, projective, flat, 2-dimensional scheme over $\operatorname{Spec} \mathcal{O}_F$ with a fixed isomorphism between its generic fiber and X.

We are interested in the classical modular curves $X_0(N)$ for genus $g \ge 2$.

Arakelov divisors allow us to define an intersection pairing $\langle\cdot,\cdot\rangle$ on an arithmetic surface that descends to the quotient with respect to principal divisors.

There is a canonical Arakelov divisor ω satisfying properties similar to the ones satisfied by the classical canonical divisor. We are interested in its self-intersection $\omega^2:=\langle \omega,\omega\rangle$.

To prove Bogomolov conjecture, Zhang in 1993 introduced a modified Arakelov divisor ω_a , the admissible ω , showing that

$$\omega^2 \ge \omega_a^2 \ge 0.$$

Asymptotic behaviour

Theorem (Dolce, M., 2024)

For the minimal regular model over $\operatorname{Spec} \mathbb{Z}$ of $X_0(N)$ we have:

$$\omega^2 \sim 3g \log N, \qquad \textit{for } N \to +\infty \textit{ and } (N,6) = 1.$$

We have $\omega_a^2 = \omega^2 - r$, with $r \ge 0$.

Theorem (Michel, Ullmo, 1998)

For the semistable minimal regular model over $\operatorname{Spec} \mathbb{Z}$ of $X_0(N)$, with N square-free, we have:

$$r \sim g/3$$
, for $N \to +\infty$ and $(N,6) = 1$.

Theorem (Banerjee, Chaudhuri, 2021)

For the stable model over $\operatorname{Spec} \mathcal{O}_L$ of $X_0(p^2)$, with p prime, we have:

$$\omega^2 \sim 2g \log p^2, \ r \sim 0.$$
 for $p \to +\infty$ and $L = \mathbb{Q}(p^{\frac{2}{p^2-1}}, \zeta_{p+1}).$

Effective Bogomolov

Theorem

Let X be a geometrically connected smooth curve over a field F with genus $g \geq 2$ and Jacobian J_X , let $\iota_{D_0} \colon X \to J_X$ be an embedding of the curve in its Jacobian and let h_{NT} be the Néron-Tate height on J_X . Then:

- For every $\varepsilon > 0$ and for every degree 1 divisor D_0 the set $\{x \in X(\overline{F}) : h_{\mathsf{NT}}(\iota_{D_0}(x)) < \frac{\langle \omega_a, \omega_a \rangle}{4(g-1)} \varepsilon\}$ is finite.
- **②** For every $\varepsilon > 0$ and divisor D_0 of degree 1 such that $D_0 \frac{1}{2g-2}K$ is a torsion point in J_X , with K a canonical divisor of X, the set $\{x \in X(\overline{F}) : h_{\mathsf{NT}}(\iota_{D_0}(x)) < \frac{\langle \omega_{\mathfrak{d}}, \omega_{\mathfrak{d}} \rangle}{2(g-1)} + \varepsilon \}$ is infinite.

For $X_0(N)$, with N large enough square-free and coprime with 6, we have:

$$\left\{ x \in X_0(N)(\overline{\mathbb{Q}}) : h_{\mathsf{NT}}(\iota_\infty(x)) < \frac{2}{3} \log N - \varepsilon \right\} \qquad \text{is finite;}$$

$$\left\{ x \in X_0(N)(\overline{\mathbb{Q}}) : h_{\mathsf{NT}}(\iota_\infty(x)) < \frac{4}{3} \log N + \varepsilon \right\} \qquad \text{is infinite.}$$

For $X_0(p^2)$, with p prime large enough, we have:

$$\left\{ x \in X_0(p^2)(\overline{\mathbb{Q}}) : h_{\mathsf{NT}}(\iota_\infty(x)) < \tfrac{1}{2}\log p^2 - \varepsilon \right\} \qquad \text{is finite;} \\ \left\{ x \in X_0(p^2)(\overline{\mathbb{Q}}) : h_{\mathsf{NT}}(\iota_\infty(x)) < \log p^2 + \varepsilon \right\} \qquad \text{is infinite.}$$