Generalized Campana points and adelic approximation

Boaz Moerman

Utrecht University

8 July 2024

M-points

Study special sets of rational points on a proper variety X over a global field (with an integral model).

Given a rational point and a prime divisor D, have an intersection multiplicity $n_v(D, P)$ at every finite place v.

Let M be a collection of prime divisors D_1, \ldots, D_n together with a set $\mathfrak{M} \subset \mathbb{N}^n$ of allowed multiplicities.

M-points over the S-integers \mathcal{O}_S are the rational points such that $(n_v(D_1, P), \dots, n_v(D, P)) \in \mathfrak{M}$ for every place v not in S. Similarly also get v-adic M-points.

If $X = \mathbb{P}^{n-1}$ and $D_i = \{X_i = 0\}$, $1 \le i \le n$, then M-points over \mathbb{Z} are $(x_1 : \cdots : x_n)$ such that the valuations lie in \mathfrak{M} . For example, fix integers m_1, \ldots, m_n , then the M-points are

- all x_i squarefree if $\mathfrak{M} = \{0,1\}^n$,
- ② $x_i \ m_i$ -full if $\mathfrak{M} = \{(w_1, \dots, w_n) \mid w_i \geq m_i \text{ or } = 0\}$ (Campana points),
- $|x_i|$ is an m_i -th power if $\mathfrak{M} = m_1 \mathbb{N} \times \ldots m_n \mathbb{N}$. (Darmon points)

M-approximation

Let $T \subset S$ be a finite set of places. Consider analogue weak/strong approximation: (X, M) satisfies M-approximation if

$$(X,M)(\mathcal{O}_S) \hookrightarrow \prod_{v \notin S} (X,M)(\mathcal{O}_v) \times \prod_{v \in S} X(K_v)$$

is dense. Similarly, it satisfies M-approximation off T if dense after removing places in T from the product. If X is a split toric variety over a global field and the D_i are the torus invariant prime divisors, then naturally obtain monoids N_M^+ and N_M in the lattice of cocharacters.

Theorem (M. 2024)

Let $T \neq \emptyset$.

- (X, M) satisfies M-approximation iff $N_M^+ = N$,
- (X, M) satisfies M-approximation off T iff $N_M = N$.

 N/N_M is a "fundamental group" of (X, M).

Consequences

- The squarefree points $(\mathfrak{M} = \{0,1\}^n)$ and Campana points satisfy M-approximation on any split toric variety.
- The Darmon points on \mathbb{P}^n satisfy M-approximation if and only if $gcd(m_i, m_i) = 1$ for all $i \neq j$.
- Over a number field: a split toric variety satisfies strong approximation off T if and only if it is simply connected. It satisfies strong approximation iff its global sections are constant.