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Introduction

Let X be a nice variety over Q. The Brauer group of X is
Br(X) = H%(X,Gp).
Number theoretical application:

X(Q) € X(Ag)®r  X(Ag) = [ X(@p)

p<oo

If X(Ag) # 0, but X(Ag)B = () then BMO to Hasse principle.
Important subgroups:

Bri(X) = ker(Br(X) — Br(X)) algebraic elements

Br(X)/Bri(X) transcendental elements
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Construction of K3 family

Let C:ax3+by3+cz3=0cC IP?Q and let p € Aut(C x C) given by:
p((P,Q)) = (Q,R) with P, Q, R collinear.

Let Y = (C x C)/p be the quotient. It's a K3 surface!

Proposition (van Luijk, 2007 )

If abc is not a cube in Q, then Bri(Y) is trivial.

Proposition (N. 2024+)

For every n, there is an injection

Br(Y)n/Bri(Y), — Br(C x C),/Bri(C x C),

which is an isomorphism if (n,3) = 1.
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Theorem (N. 2024+)
If abc and 4abc are not cubes in Q, then Br(Y) = Bri(Y), thus trivial.

Skorobogatov's conjecture states that BMO is the only obstruction to
Hasse principle for K3 surfaces, therefore we conjecture

Any everywhere locally solvable curve C : ax3 + by3 + cz3 = 0, with abc
and 4abc not cubes in QQ, has a point in a Galois cubic extension.
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