A positive density of elliptic curves are diophantine stable in certain Galois extensions

(arxiv: 2406.12561)

Pratiksha Shingavekar

(joint work with Anwesh Ray)
Chennai Mathematical Institute

The Mordell conjecture 100 years later

July 9, 2024

Pratiksha Shingayekar Diophanline stability of elliptic curves July 9, 2024

Diophantine stability

Let K be a number field and L be a finite extension of K.

If *E* is an elliptic curve defined over *K*, then $E(K) \subseteq E(L)$.

Definition

An elliptic curve $E_{/K}$ is said to be **diophantine stable** in L, if E(K) = E(L).

Fix $K = \mathbb{Q}$ and a degree p Galois extension L/\mathbb{Q} where $p \in \{3, 5\}$.

The elliptic curves $E_{/\mathbb{Q}}$ admit a short Weierstrass form $E = E_{A,B} : y^2 = x^3 + Ax + B$ for some $A, B \in \mathbb{Z}$ such that either $\ell^4 \nmid A$ or $\ell^6 \nmid B$ for all primes ℓ .

Definition

Define the naive height h(A, B) of $E_{A,B}$ by $h(A, B) := max\{|A|^3, B^2\}$.

Pratiksha Shingavekar Diophantine stability of elliptic curves July 9, 2024

2/4

Density result

Let p be a prime in $\{3,5\}$, L/\mathbb{Q} be a Galois extension of degree p and Z be the set of primes $\ell \in \mathbb{Z}$ that are ramified in L.

Theorem (A. Ray, P. Shingavekar)

Let p, L and Z be as above. Assume that

- 1 2, $p \notin Z$,
- **2** for all $\ell \in Z$, there exists an elliptic curve \mathbb{E} over \mathbb{F}_{ℓ} , such that $\mathbb{E}(\mathbb{F}_{\ell})[p] = 0$ and $\mathbb{E}^{-1}(\mathbb{F}_{\ell})[p] = 0$. Here, \mathbb{E}^{-1} is the quadratic twist of \mathbb{E} by -1.

Then there is a positive density of elliptic curves $E_{/\mathbb{Q}}$, when ordered by their naive height, such that

$$E(L) = E(\mathbb{Q}) = 0.$$

Pratiksha Shinqavekar Diophantine stability of alliptic curves July 9, 2024

3/4

Effective lower density

Definition

$$\begin{split} & \textit{For } \ell \in \textit{Z}, \textit{let} \\ & \mathfrak{a}_{\ell} := \{(\bar{A}, \bar{B}) \in (\mathbb{Z}/\ell\mathbb{Z})^2 \mid 4\bar{A}^3 + 27\bar{B}^2 \neq 0, \textit{E}_{\bar{A}, \bar{B}}(\mathbb{F}_{\ell})[p] = 0 \textit{ and } \textit{E}_{\bar{A}, -\bar{B}}(\mathbb{F}_{\ell})[p] = 0\}. \end{split}$$

Theorem (A. Ray, P. Shingavekar)

The lower density of this set of elliptic curves is at least $\eta_p \prod_{\ell} \delta_{\ell}$, where

$$\eta_{p} := \begin{cases} \frac{1}{4}, & \text{if } p = 3; \\ \frac{3}{8}, & \text{if } p = 5; \end{cases} \text{ and } \delta_{\ell} := \begin{cases} \frac{2}{3}, & \text{if } \ell = 3, \ell \notin Z \text{ and } p = 5; \\ 1 - \frac{2}{\ell^{2}} + \frac{1}{\ell^{3}}, & \text{if } \ell \notin Z \cup \{2, p\} \text{ and } \ell \neq 3; \\ 1 - \frac{1}{\ell}, & \text{if } \ell = p; \\ \frac{1}{2^{21}}, & \text{if } \ell = 2; \\ \frac{\#\mathfrak{a}_{\ell}}{\ell^{2}}, & \text{if } \ell \in Z. \end{cases}$$

Thank you for your attention!

Pratiksha Shingavekar Diophantine stability of elliptic curves July 9, 2024