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The case of rational points

Let Fg be the family of monic odd hyperelliptic curves of genus g ≥ 2

y2 = x2g+1 + c2g−1x
2g−1 + · · ·+ c0, for ci ∈ Z

Falting’s Theorem =⇒ #C (Q) < ∞ for each C ∈ Fg , but each
curve in Fg has an “expected” Q-rational Weierstrass point at ∞

Question

When curves C ∈ Fg are ordered by height (:= max{|ci |1/i}), how often
does C have no unexpected Q-rational points?

Theorem (Poonen-Stoll, 2013)

When curves C ∈ Fg are ordered by height, the proportion such that

C (Q) = {∞} is ≫ 2−O(g2) > 0 for every g ≥ 3; and tends to 100%
exponentially fast as g → ∞.
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The case of quadratic points

Given C ∈ Fg and P ∈ (Sym2 C )(Q), we call P expected if P is the
preimage of Q-rational point under the hyperelliptic map C → P1

Q
Faltings proved that if g ≥ 4, the set of unexpected points in
(Sym2 C )(Q) is finite

Question

When curves C ∈ Fg are ordered by height, how often does Sym2 C have
no unexpected Q-rational points? (I.e., how often does C have no
unexpected quadratic points?)

Theorem (LS, 2024)

When curves C ∈ Fg are ordered by height, the proportion with the
property that Sym2 C has no unexpected Q-rational points is
≫ 2−O(g2) > 0 for every g ≥ 4.
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Method of proof: Selmer-group Chabauty

Let C be monic odd hyperelliptic of genus g ≥ 4. Let J = J(C ) be
the Jacobian, and let X = im(Sym2 C → J)

For a prime p, let J(Q) ⊂ J(Qp) be the p-adic closure of J(Q) in
J(Qp). Consider the following diagram:

X (Q) X (Qp)

J(Q) J(Q) J(Qp) Zg
p Pg−1(Zp)

J(Q)/pJ(Q) J(Q)/pJ(Q) J(Qp)/pJ(Qp) Fg
p Pg−1(Fp)

Selp J

log

log⊗Fp

σ

P

P

ρ

Use results of Bhargava-Gross on the equidistribution of 2-Selmer
elements to deduce that Pσ(Sel2 J) ∩ ρ log(X (Q2)) = ∅ a positive
proportion of the time
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