A positive proportion of monic odd hyperelliptic curves have no unexpected quadratic points

Ashvin A. Swaminathan
in joint work with Jef Laga

The Mordell conjecture 100 years later
Massachusetts Institute of Technology

$$
\text { July } 8^{\text {th }}, 2024
$$

The case of rational points

- Let \mathscr{F}_{g} be the family of monic odd hyperelliptic curves of genus $g \geq 2$

$$
y^{2}=x^{2 g+1}+c_{2 g-1} x^{2 g-1}+\cdots+c_{0}, \quad \text { for } c_{i} \in \mathbb{Z}
$$

- Falting's Theorem $\Longrightarrow \# C(\mathbb{Q})<\infty$ for each $C \in \mathscr{F}_{g}$, but each curve in \mathscr{F}_{g} has an "expected" \mathbb{Q}-rational Weierstrass point at ∞

Question

When curves $C \in \mathscr{F}_{g}$ are ordered by height $\left(:=\max \left\{\left|c_{i}\right|^{1 / i}\right\}\right)$, how often does C have no unexpected \mathbb{Q}-rational points?

Theorem (Poonen-Stoll, 2013)

When curves $C \in \mathscr{F}_{g}$ are ordered by height, the proportion such that $C(\mathbb{Q})=\{\infty\}$ is $>2^{-O\left(g^{2}\right)}>0$ for every $g \geq 3$; and tends to 100% exponentially fast as $g \rightarrow \infty$.

The case of quadratic points

- Given $C \in \mathscr{F}_{g}$ and $P \in\left(\operatorname{Sym}^{2} C\right)(\mathbb{Q})$, we call P expected if P is the preimage of \mathbb{Q}-rational point under the hyperelliptic map $C \rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$
- Faltings proved that if $g \geq 4$, the set of unexpected points in $\left(\mathrm{Sym}^{2} C\right)(\mathbb{Q})$ is finite

Question

When curves $C \in \mathscr{F}_{g}$ are ordered by height, how often does $S_{y m}{ }^{2} C$ have no unexpected \mathbb{Q}-rational points? (I.e., how often does C have no unexpected quadratic points?)

Theorem (LS, 2024)

When curves $C \in \mathscr{F}_{g}$ are ordered by height, the proportion with the property that $\mathrm{Sym}^{2}{ }^{\mathrm{C}}$ has no unexpected \mathbb{Q}-rational points is $\gg 2^{-O\left(g^{2}\right)}>0$ for every $g \geq 4$.

Method of proof: Selmer-group Chabauty

- Let C be monic odd hyperelliptic of genus $g \geq 4$. Let $J=J(C)$ be the Jacobian, and let $X=\operatorname{im}\left(\operatorname{Sym}^{2} C \rightarrow J\right)$
- For a prime p, let $\overline{J(\mathbb{Q})} \subset J\left(\mathbb{Q}_{p}\right)$ be the p-adic closure of $J(\mathbb{Q})$ in $J\left(\mathbb{Q}_{p}\right)$. Consider the following diagram:

- Use results of Bhargava-Gross on the equidistribution of 2-Selmer elements to deduce that $\mathbb{P} \sigma\left(\mathrm{Sel}_{2} J\right) \cap \rho \log \left(X\left(\mathbb{Q}_{2}\right)\right)=\varnothing$ a positive proportion of the time

