Effective bounds for Gabber's theorem

Madhavan Venkatesh

Indian Institute of Technology Kanpur madhavan@cse.iitk.ac.in

The Mordell conjecture: 100 years later, MIT July 2024

IIT Kanpur

イロト イヨト イヨト イヨト

Madhavan Venkatesh

Effective Gabber

Gabber '83

Let *X* be a smooth, projective variety (of dimension *n*) over a separably closed field *k*. Then the integral ℓ -adic cohomology $\operatorname{H}^{i}(X, \mathbb{Z}_{\ell})$ are torsion free for all but finitely many ℓ .

Deligne '80

Let X/\mathbb{F}_q . Let $P_i(X, T) := \det(1 - F_q^*T \mid H^i(X, \mathbb{Q}_\ell))$. Then for a Lefschetz pencil $(X_t)_{t \in \mathbb{P}^1}$ of hyperplane sections on X, $P_{n-1}(X, T)$ is the lcm of all polynomials f(T) such that $f(T)^{(r)} \mid P_{n-1}(X_t, T)$ over all $t \in \mathbb{F}_{q^r}$, with X_t smooth.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

IIT Kanpur

Madhavan Venkatesh

Effective Gabber

Theorem

There exists a polynomial function $\pi(x)$ such that for any smooth projective degree D variety $X \subset \mathbb{P}^N$, we have $\mathrm{H}^i(X, \mathbb{Z}_\ell)$ is torsion-free for $\ell > \pi(D^N)$.

Surface case

- Fibre X as a Lefschetz pencil (X_t)_{t∈ℙ¹} of hyperplane sections, giving rise to a morphism π : X̃ → ℙ¹ whose fibres are X_t.
- Consider the sheaf $\mathcal{F} = R^1 \pi_* \mathbb{Z}_\ell$ on \mathbb{P}^1 , locally constant on open $U \subset \mathbb{P}^1$.
- $\mathcal{E} \subset \mathcal{F}|_U$, subsehaf of integral ℓ -adic vanishing cycles. Hard Lefschetz $\implies \mathcal{F}_u \otimes \mathbb{Q}_\ell \simeq H^1(X, \mathbb{Q}_\ell) \oplus (\mathcal{E}_u \otimes \mathbb{Q}_\ell)$ for $u \in U$. $P_1(X_u, T) = P_1(X, T)P_{\mathcal{E}_u}(T)$. Write $\mathcal{V} := \mathcal{E} \otimes \mathbb{F}_\ell$.

Madhavan Venkatesh

- Monodromy of V is 'big', i.e. the associated map π₁(Ū, η) → Sp(2r, 𝔽_ℓ) is surjective for ℓ > 5, different from char.
 - Local monodromy contains a transvection coming from Picard-Lefschetz formulas.
 - Associated representation is irreducible. Idea: Katz's middle convolution algorithm.
 - Theorem of Hall \implies image is full.
- Want to find $u_1, u_2 \in \mathbb{F}_Q$ from a bounded extension, and ℓ large enough, such that $P_{\mathcal{E}_{u_1}}(T), P_{\mathcal{E}_{u_2}}(T)$ are coprime mod ℓ .
- Analysis of the proportion of symplectic similitudes with char poly coprime to a given one gives bounds for *ℓ*.
- Error term in equidistribution of Frobenius gives bounds for Q for which distinct u₁, u₂ exist with above property.

Madhavan Venkatesh

Effective Gabber