Models of CM Elliptic Curves with Prescribed ℓ-adic Galois Image

Benjamin York

joint with Enrique González-Jiménez \& Álvaro Lozano-Robledo

University of Connecticut

July 9th, 2024

Question

For fixed F and prime ℓ, what are the possible images (up to conjugation) of $\rho_{E, \ell \infty}$ in $\mathrm{GL}\left(2, \mathbb{Z}_{\ell}\right)$ as E / F varies?

Mazur's "Program B": (from "Rational points on modular curves", 1976-77)
B. Given a number field K and a subgroup $H \quad$ of $G L_{2} \widehat{\mathbb{Z}}=\prod_{p} G L_{2}{ }^{T}{ }_{p}$ classify all elliptic curves E / K whose associated Galois representation on torsion points maps $\operatorname{Gal}(\overline{\mathrm{K}} / \mathrm{K})$ into $\mathrm{H} \subset \mathrm{GL}_{2} \widehat{\mathbf{Z}}$.

Question (An Inverse to Mazur's Program)

For a prime ℓ and subgroup $H \subseteq G L\left(2, \mathbb{Z}_{\ell}\right)$, if H is a possible Galois image for an elliptic curve, for what curves E do we have that $\operatorname{Im} \rho_{E, \ell^{\infty}}$ is conjugate to H ?

Main Result

Theorem (González-Jiménez, Lozano-Robledo, Y, 2023)

Let $\mathcal{O}=\mathcal{O}_{K, f}$ be an order of imaginary quadratic field K with conductor f, and suppose \mathcal{O} has class number 1 or 2 . Then
(1) We give a Weierstrass model for an elliptic curve $E=E_{\mathcal{O}}$, defined over $\mathbb{Q}\left(j_{K, f}\right)$, such that E has $C M$ by \mathcal{O}. We choose this curve to have minimal conductor norm among all curves with CM by \mathcal{O}.
(2) We give a description of all possible ℓ-adic Galois images of elliptic curves with CM by \mathcal{O}. Further, given a possible ℓ-adic Galois image $H \subseteq G L\left(2, \mathbb{Z}_{\ell}\right)$, we describe all twists of $E_{\mathcal{O}}$ whose ℓ-adic image is conjugate to H.

CM 2－adic Galois Images $\Delta_{K}=-3$ and $h\left(\mathcal{O}_{K, f}\right)=1,2$

Δ_{K}	f	$\mathbb{Q}\left(j_{K, f}\right)$	$G_{E, 2^{\infty}}$	twist	conditions
－3	1	\mathbb{Q}	$\mathcal{N}_{-1,1}\left(2^{\infty}\right)$	t	$t \in \mathbb{Q}^{*}, t \notin 4 \mathbb{Q}^{3}$
			$\left\langle\mathcal{C}_{-1,1}\left(2^{\infty}\right)^{3}, c_{1}^{\prime}\right\rangle$	$4 t^{3}$	$t \in \mathbb{Q}^{*}$
	2	Q	$\mathcal{N}_{-3,0}\left(2^{\infty}\right)$	t	$t \in \mathbb{Q}^{*}$
	3	\mathbb{Q}	$\mathcal{N}_{-9,3}\left(2^{\infty}\right)$	t	$t \in \mathbb{Q}^{*}$
	4	$\mathbb{Q}(\sqrt{3})$	$\mathcal{N}_{-12,0}\left(2^{\infty}\right)$	t	$t \in \mathbb{Q}(\sqrt{3})^{*}, t \neq \pm 1, \pm 2$
			$\left\langle G_{-12,0}^{2,1}, c_{1}\right\rangle$	－2	2．2．12．1－256．1－c4
			$\left\langle G_{-12,0}^{2,2}, c_{1}\right\rangle$	－1	2．2．12．1－16．1－a4
			$\left\langle G_{-12,0}^{2,2}, c_{-1}\right\rangle$	1	2．2．12．1－16．1－a3
			$\left\langle G_{-12,0}^{2,1}, c_{-1}\right\rangle$	2	2．2．12．1－256．1－c3
	5	$\mathbb{Q}(\sqrt{5})$	$\mathcal{N}_{-25,5}\left(2^{\infty}\right)$	t	$t \in \mathbb{Q}(\sqrt{5})^{*}$
	7	$\mathbb{Q}(\sqrt{21})$	$\mathcal{N}_{-49,7}\left(2^{\infty}\right)$	t	$t \in \mathbb{Q}(\sqrt{21})^{*}$

