Models of CM Elliptic Curves with Prescribed ℓ -adic Galois Image

Benjamin York

joint with Enrique González-Jiménez & Álvaro Lozano-Robledo

University of Connecticut

July 9th, 2024

Question

For fixed F and prime ℓ , what are the possible images (up to conjugation) of $\rho_{E,\ell^{\infty}}$ in $GL(2,\mathbb{Z}_{\ell})$ as E/F varies?

Mazur's "Program B": (from "Rational points on modular curves", 1976-77)

B. Given a number field K and a subgroup H of $\operatorname{GL}_2\widehat{\mathbf{Z}} = \prod_p \operatorname{GL}_2 \mathbf{Z}_p$ classify all elliptic curves $E_{/K}$ whose associated Galois representation on torsion points $\operatorname{maps} \operatorname{Gal}(\overline{K}/K) \text{ into } \operatorname{H} \subset \operatorname{GL}_2\widehat{\mathbf{Z}} \text{ .}$

Question (An Inverse to Mazur's Program)

For a prime ℓ and subgroup $H \subseteq GL(2, \mathbb{Z}_{\ell})$, if H is a possible Galois image for an elliptic curve, for what curves E do we have that Im $\rho_{E,\ell^{\infty}}$ is conjugate to H?

Main Result

Theorem (González-Jiménez, Lozano-Robledo, Y, 2023)

Let $\mathcal{O} = \mathcal{O}_{K,f}$ be an order of imaginary quadratic field K with conductor f, and suppose \mathcal{O} has class number 1 or 2. Then

- We give a Weierstrass model for an elliptic curve $E = E_{\mathcal{O}}$, defined over $\mathbb{Q}(j_{K,f})$, such that E has CM by \mathcal{O} . We choose this curve to have minimal conductor norm among all curves with CM by \mathcal{O} .
- ② We give a description of all possible ℓ -adic Galois images of elliptic curves with CM by \mathcal{O} . Further, given a possible ℓ -adic Galois image $H \subseteq GL(2,\mathbb{Z}_{\ell})$, we describe all twists of $E_{\mathcal{O}}$ whose ℓ -adic image is conjugate to H.

CM 2-adic Galois Images $\Delta_K = -3$ and $h(\mathcal{O}_{K,f}) = 1, 2$

Δ_{κ}	f	$\mathbb{Q}(j_{K,f})$	$G_{E,2^\infty}$	twist	conditions
-3	1	Q	$\mathcal{N}_{-1,1}(2^{\infty})$	t	$t \in \mathbb{Q}^*, \ t \not\in 4\mathbb{Q}^3$
			$\langle \mathcal{C}_{-1,1}(2^{\infty})^3, c_1' \rangle$	4t ³	$t\in\mathbb{Q}^*$
	2	Q	$\mathcal{N}_{-3,0}(2^{\infty})$	t	$t\in\mathbb{Q}^*$
	3	Q	$\mathcal{N}_{-9,3}(2^{\infty})$	t	$t\in\mathbb{Q}^*$
	4	$\mathbb{Q}(\sqrt{3})$	$\mathcal{N}_{-12,0}(2^{\infty})$	t	$t \in \mathbb{Q}(\sqrt{3})^*, t \neq \pm 1, \pm 2$
			$\langle G_{-12,0}^{2,1},c_1 \rangle$	-2	2.2.12.1-256.1-c4
			$\langle G_{-12,0}^{2,2},c_1 \rangle$	-1	2.2.12.1-16.1-a4
			$\langle G_{-12,0}^{2,2},c_{-1} angle$	1	2.2.12.1-16.1-a3
			$\langle G_{-12,0}^{2,1},c_{-1} angle$	2	2.2.12.1-256.1-c3
	5	$\mathbb{Q}(\sqrt{5})$	$\mathcal{N}_{-25,5}(2^{\infty})$	t	$t\in \mathbb{Q}(\sqrt{5})^*$
	7	$\mathbb{Q}(\sqrt{21})$	$\mathcal{N}_{-49,7}(2^{\infty})$	t	$t \in \mathbb{Q}(\sqrt{21})^*$