Algebraic Independence of Special Points on Shimura Varieties

Mordell Conference

Roy Zhao

Caltech

July 9, 2024

Joint work with Yu Fu

Previous Results

Definition

Let E be an elliptic curve over $\overline{\mathbb{Q}}$, a subgroup $\Gamma \subset E(\overline{\mathbb{Q}})$ is finite-rank if $\Gamma \otimes_{\mathbb{Z}} \mathbb{Q}$ is finite-dimensional.

Theorem (Buium-Poonen ('07), Pila-Tsimerman ('19))

Let S=X(N) be the modular curve of level $N, \Sigma\subset S$ be the CM-points of S, and $\Gamma\subset E(\overline{\mathbb{Q}})$ be a finite-rank subgroup. Let $\Phi\colon S\to E$ be a dominant morhism, then $\Phi(\Sigma)\cap \Gamma$ is finite.

Theorem (Pila-Tsimerman, '14)

Identify the CM-points Σ of a modular curve with their j-invariants, $\Sigma \subset \mathbb{C}$. Let $\Gamma \subset \mathbb{C}^{\times}$ be a finite-rank subgroup. Then $\Sigma \cap \Gamma$ is finite.

Our Result

Theorem (Fu-Z. ('24))

Let G be a commutative algebraic group defined over a field of characteristic 0, and suppose S is a Shimura variety with simple Shimura datum. Let $\Sigma \subset S$ be the special points of S and $\Gamma \subset G$ be a finite-rank subgroup. Let $\Phi \colon S \to G$ be a dominant morphism. There exists a proper subvariety $V \subset S$ such that $\Sigma \cap \Phi^{-1}(\Gamma) \subset V$.