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| give a short history of the subject. It is entirely my personal view and
does not claim historical accuracy. Of course diophantine equations have a
long history, starting with the Egyptians and Diophantus, and including

the Fermat problem.



In 1922 Mordell proved that on a cubic over QQ the rational points form a
finitely generated abelian group, and remarked that for curves of higher
genus there might always be only finitely many. He was a pure number
theorist and did not speculate about other number fields. In 1928 Weil
generalised this to the groups of rational points on Jacobians of curves.,
over arbitrary number fields This implies the same for all abelian varieties,
but their algebraic theory had not evolved enough at this time. (Later Weil
himself fixed that). Probably many tried to derive from this the Mordell
conjecture, somehow showing that the image of a curve in its Jacobians
avoids almost all elements in a finitely generated subgroup of its points.
But nobody claimed success, until Vojta managed to do this in 1989.
Before that Chabauty showed in 1941 finiteness of rational points if the
rank of the Mordell-Weil group is smaller that the genus. In this case
rational points lie on a proper p-adic subgroup of the Jacobian.Also Siegel
proved in 1929 finiteness of integral points on an affine subset of an
elliptic curve.



The method used in this time was diophantine approximation: One can
measure the complexity of rational points P by the (logarithmic) height
function h(P). If we bound h(P) there are only finitely many P's left, so if
there are infinitely many ‘bad P's their heights are unbounded. So we can
find P; and P, with h(P;) big and the ratio h(P2)/h(Pi) big (what this
means can be described by explicit constants). But then one constructs a
function (P, Q) in two variables which is bihomogeneous of degrees d;
and d» roughly proportional to the inverses of h(P;), which vanishes to a
high order (better high index) an (P1, Pz). Finally one shows (and this is
the subtle point, for example the content of Roth's lemma) that this is not
possible.
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Shafarevich made his conjecture on finiteness of curves with given genus
and locus of bad reduction in his talk on the ICM in Stockholm 1962. In
this decade Mordell was shown for the function field of a complex curve B.
The first proof was due to Manin in 1963 and brought us the Gauss-Manin
connection. Another one was done by Grauert in 1965. In all these
developments one has to exclude constant (or more precisely isotrivial)
curves. That is done by requiring that the map from B to the moduli
space of curves (or to the moduli space of abelian varieties) is
nonconstant. Equivalently the pullback of an ample line bundle on the
moduli space should have positive degree. As ample line bundle one
chooses the determinant of the space of differentials on the relative curve.
Finally in 1968 Parshin proved Mordell and Shafarevich for curves with
everywhere good reduction:



Firstly Shafarevich implies Mordell via the Kodaira construction which
associates to a curve C and a point P C C a new curve D which is a
covering (necessarily nonabelian) of C only ramified in P. Secondly for a
nonconstant curve C — B with everywhere good reduction the relative
differentials w are ample. Namely it is not difficult to show that w has non
negative degree on each effective curve. Secondly Weierstrass points
define a non trivial map from the determinant of relative differentials on C
to some positive power of w. Finally Kodaira vanishing implies that the
map from B into the moduli space cannot be deformed, and Hodge theory
bounds the degree of relative differentials and thus of this map. Namely
2-forms inject into singular cohomology which has bounded dimension.



In 1966 Tate proved his conjecture for abelian varieties A over a finite field
F,. That is Frobenius linear endomorphisms of the Tate module T;(A) (/
prime to the characteristic) are induced (up to a factor Z;) by
endomorphisms of the abelian variety. For the proof note that the graph of
the endomorphism induces a sequence of subgroups G, C A x A. If we
show that infinitely many of the quotients A X A/G, are isomorphic this
provides us with plenty of endomorphisms, enough to prove the result.
Finiteness is clear for (say) principally polarised abelian varieties because
they are parametrised by the Fg-points of a quasicompact moduli space,
but Tate had to struggle to get rid of polarisations. Soon this became
much easier.



In 1971 Arakelov generalised Parshin's result to curves with bad reduction.
Also in 1974 he invented Arakelov theory hoping to generalise from
function fields to number fields. Namely a relative curve over the integers
of a number fields corresponds to a relative curve over an affine subset

B® c B, so that somehow the fibers over the remaining points of B are
missing, and intersection numbers have little meaning. Arakelov's idea was
to add metrics at the (missing) infinite places of the number field, and
then define meaningful intersection numbers. Although finally this theory
was not used it still provided valuable inside about what to do at infinite
places.



In 1974 Zarhin extended Tate's theorem to abelian varieties over function
fields of curves. He invented two major improvements:

Firstly he eliminated polarisations by using that for any abelian variety A
the product A* x A%* is principally polarised. Secondly he bounded the
heights of the quotients A x A/G,, thus deriving finiteness. For this he
used Mumford’s theory of theta functions. Today we use the differentials
of top order on A. These are invariant under the isogeny of /-power order.
The relation between those two approaches is that theta null values are
modular forms of weight 1/2.



In 1979 Szpiro extended Parshin's result to base curves B of positive
characteristic. Here a new difficulty arises because if the base curve is
defined over a finite fields pullbacks of C via powers of the Frobenius on B
have the same locus of bad reduction but the numerical invariants tend to
infinity. This was fixed by requiring that the Kodaira-Spencer class of the
relative curve C (the differential of the map into moduli space) does not
vanish (otherwise pullback by Frobenius would give counterexamples).
This class is a class in Hl(C,wgl), so this cohomology group is nonzero.
Using variants of Kodaira vanishing in characteristic p this bounded
numerical invariants and thus implied the Shafarevich conjecture. Still for
number fields there seems to be no Kodaira-Spencer class, so something
was missing.



Finally | got personally involved. Szpiro was a friend of my advisor Nastold
and | visited him in Paris and learned about his point of view. Especially |
first heard about Arakelov theory and found this very interesting and
inspiring. In 1982 | extended the Parshin-Arakelov method to families of
abelian varieties over function fields of characteristic zero and tried to
prove the Shafarevich conjecture for them. | got half of it, namely the
boundedness of numerical invariants.,but also found out that sometimes
families could be deformed. On the way | learned about the importance of
the sheaf of relative differentials on the moduli space of abelian varieties.
Also | remember that the referee suggested to replace the relevant
arguments by results from hyperbolic geometry, but (fortunately) this was
unknown territory for me and | refused. Also Szpiro inspired me to look
into Arakelov theory.



Back in Germany | thought about the Tate-conjecture. for abelian
varieties. Following Zarhin | computed the change of heights under an
isogeny. For the height | used the degree of differentials metrised by
square integration, which was the obvious choice prescribed by Arakelov
theory. This change of heights was given by the sum of two terms, namely
one determined by ramification, and the other (easier) by the change of
square integration. | then realised that for p-divisible groups Tate had
already computed the first term and shown how to read this off from the
Galois representation, and finally the Weil conjectures finished the job,
that is the heights of the quotients became eventually constant. Also
results of Raynaud replacing Tate worked for finite subgroups (not related
to p-divisible groups), and so | obtained finiteness in a given isogeny class.
As the number of such classes could also be bounded, by applying
Cebotarev to Galois representations, | had shown Tate, Shafarevich and
Mordell at once and my career take a definitive turn upwards. Also one
long term consequence is the present conference. The missing tools from
function fields (Hodge theory, Kodaira-Spencer class) had been replaced
by finiteness of possible Galois representations.
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In 1989 Vojta gave a new proof for Mordell using diophantine
approximation. He also was the first he could make use of Mordell-Weil for
that: Namely he divided the real vector space spanned by the Mordell-Weil
group into cones where all the vectors in a cone have approximately the
same direction (| think this idea is due to Mumford). He then set up the
machinery of diophantine approximation and showed that in a fixed cone
the heights of points were bounded. As people were a little bit hesitant |
felt like a boyscout and decided to do a good deed and look into the
paper. | was amply rewarded because | found it not only to be correct but
also that it could be to generalised to abelian varieties. And finally |
understood how to prove Roth's lemma!



A new trend has been the use of p-adic methods. For example in 2005
Kim gave a new proof of Siegel's theorem, using unipotent bundles. On a
curve C we consider the universal unipotent crystals of unipotence degree
< n. These form a projective system, admit a Hodge filtration, and if C
has good reduction at p they are Frobenius crystals. Z,-points on C lie in
a finite union of p-adic open disks on which we we fix their reduction
modulo p. It is known that Q,-crystals are constant on such disks. The
Hodge filtration then defines a p-adically analytic map from the open disk
into a (projective limit of) flag varieties. It can be shown that its image is
Zariski dense. Also p-adic Hodge theory assigns to these data a Galois
representation of the local field. If the point in the open disk is a rational
point over a number field the Galois representation is induced from a
global Galois representation for which there are strong restrictions, and
thus the image lies in a proper Zariski closed subset and thus is finite.



Similar reasonings lead Lawrence and Venkatesh 2019 to a new proof of
Mordell. In it there appear no height functions. Instead the main tool is
finiteness of possible Galois representations. Namely they define an
analytic map from the curve into a parameter space of Galois
representations, via a variant of the Parshin-Kodaira construction. This
map has Zariski dense image. Also in the parameter space reducible
representations (even reducible locally at p) lie in a proper Zariski closed
subspace. Finally the irreducible ones belong to a finite list.

Another development is the search for effective methods to really
determine all rational points. This has lead to effective bounds for the
number of rational points, but not for their maximal height. That this is
possible in principle was already remarked by Parshin. On the other hand if
the Chabauty method is applicable (Chabauty-Coleman) it gives effective
results. Recently the method has been enhanced (quadratic Chabauty)
and now covers more cases, for example the infamous cursed curve.
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