Sparsity of rational points on curves

Ziyang Gao

Leibniz University Hannover, Germany

MIT, Mordell Conference July 8, 2024

Image: Image:

Ziyang GAO (Leibniz University Hannover, Germany)

イロト イポト イヨト イヨト MIT, Mordell Conference July 8, 2024

1/36

f(X, Y)	$X^2 + Y^2 - 1$	$Y^2 - X^3 - X$	$Y^2 - X^3 - 2$	$Y^2 - X^6 - X^2 - 1$
	(3/5, 4/5), (5/13, 12/13), (8/17, 15/17), etc.	(0,0), (±1,0).	(-1, 1), (34/8, 71/8), (2667/9261, 13175/9261), <i>etc.</i>	$(0, \pm 1),$ $(\pm 1/2, \pm 9/8).$
		1	1	2

Sparsity of rational points on curves

~~>

For example: f(X, Y) = polynomial in X and Y with coefficients in \mathbb{Q} . What can we say about the Q-solutions to f(X, Y) = 0?

Diophantine problem. Rational points on algebraic curves.

Motivation

It is a fundamental question in mathematics to solve equations.

Ziyang GAO (Leibniz University Hannover, Germany)

MIT, Mordell Conference July 8, 2024 1/36

A E >

Image: Image:

Motivation

It is a fundamental question in mathematics to solve equations.

For example:

f(X, Y)= polynomial in X and Y with coefficients in \mathbb{Q} . What can we say about the \mathbb{Q} -solutions to f(X, Y) = 0?

~~>

Diophantine problem. Rational points on algebraic curves.

Some examples:

f(X, Y)	$X^{2} + Y^{2} - 1$	$Y^2 - X^3 - X$	$Y^2 - X^3 - 2$	$Y^2 - X^6 - X^2 - 1$
Q- solutions	(3/5, 4/5), (5/13, 12/13), (8/17, 15/17), <i>etc.</i>	(0, 0), (±1, 0).	(-1, 1), (34/8, 71/8), (2667/9261, 13175/9261), <i>etc.</i>	(0, ±1), (±1/2, ±9/8).
	infinitely many	finitely many	infinitely many	finitely many
genus of the as- sociated curve	0	1	1	2

Sparsity of rational points on curves

In what follows,

- ▶ $g \ge 0$ and $d \ge 1$ integers;
- > K= number field of degree d;
- > C = irreducible smooth projective curve of genus *g* defined over *K*.

As usual, we use C(K) to denote the set of K-points on C.

イロト イポト イヨト イヨト 二日

San

2/36

In what follows,

- ▶ $g \ge 0$ and $d \ge 1$ integers;
- > K= number field of degree d;
- > C = irreducible smooth projective curve of genus *g* defined over *K*.

As usual, we use C(K) to denote the set of K-points on C.

^{Sec} If g = 0, then either $C(K) = \emptyset$ or $C \cong \mathbb{P}^1$ over *K*.

= nan

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

Genus 1

Assume g = 1. If $C(K) \neq \emptyset$, then C(K) has a structure of abelian groups with an identity element $O \in C(K)$. \rightarrow Elliptic curve E/K := (C, O).

Theorem (Mordell–Weil)

E(K) is a finitely generated abelian group. Namely,

 $E(K) \cong \mathbb{Z}^{\rho} \oplus E(K)_{\text{tor}}$

with $\rho < \infty$ and $E(K)_{tor}$ finite.

3

イロト イポト イヨト イヨト

Theorem (Mazur '77 for $K = \mathbb{Q}$, Merel '96)

 $\#E(K)_{tor}$ is uniformly bounded above in terms of $[K : \mathbb{Q}]$.

Mazur proved this result by establishing the following theorem:

Theorem (Mazur '77)

If N = 11 or $N \ge 13$, then the only \mathbb{Q} -points of the modular curve $X_1(N)$ are the rational cusps.

The genus of $X_1(N)$ is ≥ 2 if N = 13 or $N \ge 16$. \Rightarrow results of rational points on curves of genus ≥ 2 .

(日)

Genus \geq 2: Mordell Conjecture

Mordell made the following conjecture about 100 years ago (1922), known as the Mordell Conjecture. It became a theorem in 1983, proved by Faltings.

Theorem (Faltings '83; known as Mordell Conjecture)

If $g \ge 2$, then the set C(K) is finite.

Feature of this theorem	When applied to Mazur's result on $X_1(N)$	
weak topological hypothesis, very strong arithmetic conclusion!		
➤ not constructive yet.	X ₁ (N)(Q) cannot be determined by Faltings's Theorem.	

Genus \geq 2: Fermat's Last Theorem

Fix $n \ge 4$ integer.

$$F_n: X^n + Y^n - 1 = 0.$$

Then $g(F_n) \ge 2$.

Faltings

∃ only finitely many $(x, y) \in \mathbb{Q}^2$ with $x^n + y^n = 1$.

For this example, more is expected.

Theorem (Wiles, Taylor–Wiles, '95; known as Fermat's Last Theorem) If x and y are rational numbers such that $x^n + y^n = 1$, then $(x, y) = (0, \pm 1)$ or $(x, y) = (\pm 1, 0)$.

Of course if n is furthermore assumed to be odd, then -1 cannot be attained.

・ロト ・ 同ト ・ ヨト ・ ヨト

San

Genus ≥ 2

From now on, we always assume that $g \ge 2$. The example of Fermat's Last Theorem suggests that it can be extremely hard to compute $C(\mathbb{Q})$ for an arbitrary C! Instead, here is a more achievable but still fundamental question.

Question (Mordell, Weil, Manin, Mumford, Faltings, etc.)

Is there an "easy" upper bound for #C(K)? How does C(K) "distribute"?

Different grades of the question:

- > Finiteness of C(K)
- > Upper bound of #C(K)
- > Uniformity of bounds of #C(K)
- Effective Mordell

(日)

Heights

Use height to measure the "size" of the rational and algebraic points.

- Solution Q: $h(a/b) = \log \max\{|a|, |b|\}, \text{ for } a, b \in \mathbb{Z} \text{ and } gcd(a, b) = 1.$
- On $\mathbb{P}^n(\mathbb{Q})$: $h([x_0 : \cdots : x_n]) = \log \max\{|x_0|, \ldots, |x_n|\}$, for $x_i \in \mathbb{Z}$ and $gcd(x_0, \ldots, x_n) = 1$.
- [∞] Arbitrary number field *K*: For $[x_0 : \dots : x_n] \in \mathbb{P}^n(K)$ with each $x_j \in K$, $h([x_0 : \dots : x_n]) = \frac{1}{[K:\mathbb{Q}]} \sum_{v \in \Sigma_K} \log \max\{||x_0||_v, \dots, ||x_n||_v\}.$

→ (logarithmic) Weil height on $\mathbb{P}^n(\overline{\mathbb{Q}})$, and on any subvariety $X \subseteq \mathbb{P}^n$.

Two important properties \rightarrow	Northcott Property	
· ↓ · ·	For all B and $d \ge 1$,	
	$\{\mathbf{x} \in \mathbb{P}^{n}(\overline{\mathbb{Q}}) : h(\mathbf{x}) \le B, [\mathbb{Q}(\mathbf{x}) : \mathbb{Q}] \le d\}$	
$h(\mathbf{x}) \ge 0$ for all $\mathbf{x} \in \mathbb{P}^n(\overline{\mathbb{Q}})$.	is finite.	

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Heights

Use height to measure the "size" of the rational and algebraic points.

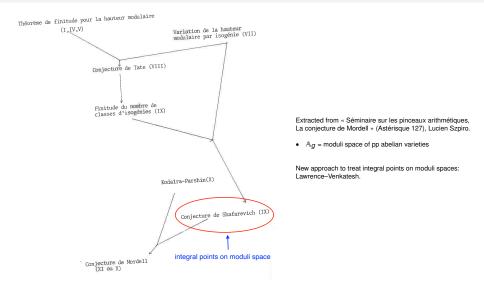
- Solution Q: $h(a/b) = \log \max\{|a|, |b|\}, \text{ for } a, b \in \mathbb{Z} \text{ and } gcd(a, b) = 1.$
- On $\mathbb{P}^n(\mathbb{Q})$: $h([x_0 : \cdots : x_n]) = \log \max\{|x_0|, \ldots, |x_n|\}$, for $x_i \in \mathbb{Z}$ and $gcd(x_0, \ldots, x_n) = 1$.
- Arbitrary number field *K*: For $[x_0 : \cdots : x_n] \in \mathbb{P}^n(K)$ with each $x_j \in K$, $h([x_0 : \cdots : x_n]) = \frac{1}{[K:\mathbb{Q}]} \sum_{v \in \Sigma_K} \log \max\{\|x_0\|_v, \dots, \|x_n\|_v\}.$

→ (logarithmic) Weil height on $\mathbb{P}^n(\overline{\mathbb{Q}})$, and on any subvariety $X \subseteq \mathbb{P}^n$.

Two important properties \rightarrow	Northcott Property
↓ · · · · · · · · · · · · · · · · · · ·	For all B and $d \ge 1$,
Bounded from below	$\{\mathbf{x} \in \mathbb{P}^{n}(\overline{\mathbb{Q}}) : h(\mathbf{x}) \leq B, [\mathbb{Q}(\mathbf{x}) : \mathbb{Q}] \leq d\}$
$h(\mathbf{x}) \ge 0$ for all $\mathbf{x} \in \mathbb{P}^n(\overline{\mathbb{Q}})$.	is finite.

・ ロ ト ・ 原 ト ・ 日 ト ・ 日 ト

Genus \geq 2: Faltings's proof of the Mordell Conjecture



3

(日)

Faltings height

► $A/\overline{\mathbb{Q}}$ = pp abelian variety.

Faltings defined an intrinsic number $h_{\text{Fal}}(A)$ associated with A (cf. Astérisque 127, or Cornell–Silverman).

 $\rightsquigarrow h_{\operatorname{Fal}} \colon \mathbb{A}_g(\overline{\mathbb{Q}}) \to \mathbb{R}.$

Why is it called a height?

Fix an embedding $\mathbb{A}_g \subseteq \mathbb{P}^N$ over $\overline{\mathbb{Q}}$. \rightsquigarrow Weil height $h: \mathbb{A}_g(\overline{\mathbb{Q}}) \to \mathbb{R}$.

Theorem (Faltings, improved constants by Bost, David, Pazuki)

 $|\frac{1}{2}h_{\text{Fal}}(A) - h([A])| \le c_g \log(h([A]) + 2).$

Upshots:

- > $h_{\text{Fal}}(A)$ bounded from below solely in terms of g.
- > Northcott property for h_{Fal} .

200

・ ロ ト ・ 原 ト ・ 日 ト ・ 日 ト

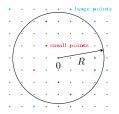
Genus \geq 2: a new proof by Vojta

In early 90s, Vojta gave a second proof to Faltings's Theorem with Diophantine method.

- > Closer to A. Weil's hope.
- Does not prove the other big conjectures (Tate, Shafarevich) as in Faltings's first proof.
- > In this proof, one sees some descriptions of distribution of algebraic points on *C*. They lead to an upper bound on #C(K).
- The proof was simplified by Bombieri. And generalized by Faltings to some high dimensional cases.

Starting Point: Take $P_0 \in C(K)$, and see *C* as a curve in J = Jac(C) via the Abel–Jacobi embedding $C \rightarrow J$ based at P_0 . Then $C(K) \subseteq J(K)$.

Vojta's proof of the Mordell Conjecture: Setup



Normalized height function $\hat{h}: J(\overline{\mathbb{Q}}) \to \mathbb{R}_{\geq 0}$ vanishing precisely on $J(\overline{\mathbb{Q}})_{\text{tor}}$.

- $\rightsquigarrow \hat{h}: J(K) \otimes_{\mathbb{Z}} \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ quadratic, positive definite.
- → Normed Euclidean space $(J(K) \otimes_{\mathbb{Z}} \mathbb{R}, |\cdot| := \hat{h}^{1/2})$, with J(K) a lattice.

12/36

→ Inner product $\langle \cdot, \cdot \rangle$ on $J(K) \otimes_{\mathbb{Z}} \mathbb{R}$, and the angle of each two points in $J(K) \otimes_{\mathbb{Z}} \mathbb{R}$.

Vojta's proof of Mordell Conjecture: Mumford's work

A starting point is the following (consequence of) Mumford's Formula: For $P, Q \in C(\overline{\mathbb{Q}})$ with $P \neq Q$, we have

$$\frac{1}{g} (|P|^2 + |Q|^2 - 2g\langle P, Q \rangle) + O(|P| + |Q| + 1) \ge 0$$

As $g \ge 2$, the leading term is an indefinite quadratic form, which a priori could take any value. This gives a strong constraint on the pair (P, Q)! \Rightarrow Algebraic points are "sparse" in C!

イロト イポト イヨト イヨト 二日

Vojta's proof of Mordell Conjecture: Both inequalities

Theorem

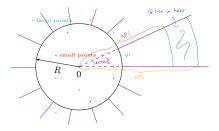
There exist R = R(C) and $\kappa = \kappa(g)$ satisfying the following property. If two distinct points $P, Q \in C(\overline{\mathbb{Q}})$ satisfy $|Q| \geq |P| \geq R$ and

 $\langle P, Q \rangle \geq (3/4)|P||Q|,$

then

- > (*Mumford*, '65) $|Q| \ge 2|P|$;
- \succ (Vojta, '91) $|Q| \leq \kappa |P|$.

This finishes the the proof of Mordell Conjecture, with #large points $\leq (\log_2 \kappa + 1)7^{\text{rk}J(\kappa)}$.



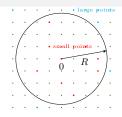
If P_1, \ldots, P_n are in the cone where P lies, then $\kappa |P| > |P_n| > 2|P_{n-1}| > \cdots > 2^n |P|.$ So in each cone there are $< \log_2 \kappa + 1$ large points! $7^{\operatorname{rk} J(K)}$ such cones, according to the angle condition.

Image: Image:

Genus \geq 2: Classical bound

Theorem (Bombieri '91, de Diego '97, Alpoge 2018)

- > One can take $R^2 = c_0(g)h_{\text{Fal}}(J)$.
- > #large points ≤ c(g)1.872^{rk_ZJ(K)}. →A nice bound for #large points!



For a bound of #C(K), we have:

Theorem (David-Philippon, Rémond 2000)

 $\#C(K) \leq c(g, [K:\mathbb{Q}], h_{\operatorname{Fal}}(J))^{1+\operatorname{rk}_{\mathbb{Z}}J(K)}.$

Ziyang GAO (Leibniz University Hannover, Germany)

Sparsity of rational points on curves

Genus ≥ 2

Different grades of the question:

- > Finiteness of C(K)

- > Upper bound of #C(K)

- > Uniformity of bounds of #C(K)
- Effective Mordell

Sparsity of algebraic points:

"sparsity" of large points

➤ Mumford's Inequality '65

(日)

16/36

- ➤ Vojta's Inequality '91
- ≻ ?©
- ≻ ???

And about the distribution / sparsity of points:

Are there other descriptions of the "sparsity" of algebraic points on C? Or at least can we say something about "small" points?

Genus \geq 2: Towards uniform bounds on #C(K)

The cardinality #C(K) must depend on g.

Example

The hyperelliptic curve defined by

$$y^2 = x(x-1)\cdots(x-2024)$$

has genus 1012 and has at least 2026 different rational points.

The cardinality #C(K) must depend on $[K : \mathbb{Q}]$.

Example

The hyperelliptic curve

$$y^2 = x^6 - 1$$

has points (1, 0), $(2, \pm \sqrt{63})$, $(3, \pm \sqrt{728})$, etc.

(日)

Genus \geq 2: Towards uniform bounds on #C(K)

Here is a very ambitious bound.

Question

Is it possible to find a number $B(g, [K : \mathbb{Q}]) > 0$ such that

 $\#C(K) \le B?$

This question has an affirmative answer if one assumes a widely open conjecture of Bombieri–Lang on rational points on varieties of general type (Caporaso–Harris–Mazur, Pacelli, '97).

Two divergent opinions towards this conditional result: either this ambitious bound is true, or one could use this to disprove this conjecture of Bombieri–Lang.

イロト イポト イヨト イヨト

18/36

Genus \geq 2: Mazur's Conjecture B

Theorem (Dimitrov-G'-Habegger, 2021; Mazur's Conjecture B ('86, 2000))

If $g \ge 2$, then

```
\#C(K) \leq c(g, [K:\mathbb{Q}])^{1+rk_{\mathbb{Z}}J(K)}
```

where J is the Jacobian of C. Moreover, $c(g, [K : \mathbb{Q}])$ grows at most polynomially in $[K : \mathbb{Q}]$.

- > Compared to the classical result, the *height of C* is no longer involved.
- ➤ We showed that c does not depend on [K : Q] assuming the relative Bogomolov conjecture. Kühne (2021) removed this dependence on [K : Q] unconditionally.
- Previous results:
 - ▶ When $J \subseteq E^n$ and some particular family of curves (David, Philippon, Nakamaye 2007). Average number of $\#C(\mathbb{Q})$ when g = 2 (Alpoge 2018).
 - > When rkJ(K) ≤ g 3 (hyperelliptic by Stoll 2015, then Katz–Rabinoff–Zureick-Brown 2016).

San

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Example of a 1-parameter family

Example (DGH 2019)

Let $s \ge 5$ be an integer and let C_s be the genus 2 hyperelliptic curve defined by

$$C_s: y^2 = x(x-1)(x-2)(x-3)(x-4)(x-s).$$

Then

$$\begin{aligned} \operatorname{rk}(J_{s})(\mathbb{Q}) &\leq 2g \# \{ p : p = 2 \text{ or } C_{s} \text{ has bad reduction at } p \} \\ &\leq 2g \# \{ p : p | 2 \cdot 3 \cdot 5 \cdot s(s-1)(s-2)(s-3)(s-4) \} \\ &\ll_{g} \frac{\log s}{\log \log s}. \end{aligned}$$

This yields, for any $\epsilon > 0$,

$$\#C_s(\mathbb{Q}) \ll_{\epsilon} s^{\epsilon}.$$

Ziyang GAO (Leibniz University Hannover, Germany)

3

San

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Genus \geq 2: New Gap Principle

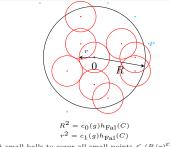
Our new contribution is a New Gap Principle.

Theorem (New Gap Principle, Dimitrov–G'–Habegger + Kühne, 2021)

Assume $g \ge 2$. Each $P \in C(\overline{\mathbb{Q}})$ satisfies

$$\#\{Q \in C(\overline{\mathbb{Q}}) : \hat{h}_L(Q-P) \le c_1 h_{\mathrm{Fal}}(J)\} \le c_2$$

for some positive constants c_1 and c_2 depending only on g.



small balls to cover all small points $\leq (R/r)^{\operatorname{rk} J(K)}$ # of points in each ball $\leq c_2$

- > The Bogomolov Conjecture, proved by Ullmo and S.Zhang ('98), gives this result with c_1 and c_2 depending on *C* (but don't know how).
- ➤ The New Gap Principle is another phenomenon of the "sparsity" of algebraic points in *C* of genus ≥ 2 . It says that algebraic points in $C(\overline{\mathbb{Q}})$ are in general far from each other in a quantitative way.
- It implies that #small rational points ≤ c'(g)^{1+rkJ(K)} by a simple packing argument.
- Second proof by Yuan; uses Yuan–Zhang's adelic line bundle over quasi-proj var.

Ziyang GAO (Leibniz University Hannover, Germany)

Sparsity of rational points on curves

Genus ≥ 2

Different grades of the question:

- > Finiteness of C(K)

- > Upper bound of #C(K) >
- Uniformity of bounds of #C(K)
 "subject" to the Mordell–Weil rank
- Effective Mordell

Sparsity of algebraic points:

- ➤ Mumford's Inequality -'65
- > Vojta's Inequality -'91
- New Gap Principle -2021 (Dimitrov–G'–Habegger + Kühne)

≻ ???⊗

And:

- Mumford's and Vojta's Inequalities to describe that large algebraic points are "sparse" in C.
- New Gap Principle gives another description on how all algebraic points are "sparse" in *C*.
- Effective Mordell is a conjectural statement which describes where to find the rational points ("no large rational points").

San

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Genus ≥ 2

Different grades of the question:

- > Finiteness of C(K)

- > Upper bound of #C(K)

- Uniformity of bounds of #C(K)
 "subject" to the Mordell–Weil rank
- Effective Mordell

Sparsity of algebraic points:

- ➤ Mumford's Inequality -'65
- > Vojta's Inequality -'91
- New Gap Principle -2021 (Dimitrov–G'–Habegger + Kühne)

≻ ???§

And:

- Mumford's and Vojta's Inequalities to describe that large algebraic points are "sparse" in C.
- New Gap Principle gives another description on how all algebraic points are "sparse" in *C*.
- Effective Mordell is a conjectural statement which describes where to find the rational points ("no large rational points").

Ziyang GAO (Leibniz University Hannover, Germany)

(日) (四) (三) (三) (三)

Conjecture (Effective Mordell, made by Szpiro)

There exists an effectively computable $c = c(g, [K : \mathbb{Q}], \operatorname{disc}(K/\mathbb{Q})) > 0$ such that $\hat{h}(P) \leq ch_{\operatorname{Fal}}(J)$ for all C/K and $P \in C(K)$.

- Effective Mordell tells us where to find all the rational points on C ("no large rational points")!
- > Little is known about Effective Mordell.
- ➤ Checcoli, Veneziano, and Viada proved results in this direction when C ⊆ Eⁿ for some elliptic curve E with rkE(K) < n (modification if E has CM) and C is *transverse*, following the method of Manin–Demjanenko.

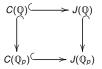
・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

San

Genus \geq 2: Chabauty–Coleman–Kim method

Nother approach to compute C(K) is the Chabauty–Coleman–Kim method, by obtaining sharp bounds on #C(K) when rkJ(K) is small. Currently:

> Chabauty–Coleman: $K = \mathbb{Q}, \operatorname{rk} J(\mathbb{Q}) < g.$



 $\dim \overline{J(\mathbb{Q})} \leq \operatorname{rk} J(\mathbb{Q}) < g \Rightarrow C(\mathbb{Q}) \subseteq C(\mathbb{Q}_p) \cap \overline{J(\mathbb{Q})} \text{ finite.}$

Quadratic Chabauty: rkJ(Q) = g, in various publications of Jennifer Balakrishnan in collaboration with Besser, Müller, Dogra *et al.* A geometric point of view by Edixhoven–Lido:

 $\Rightarrow C \hookrightarrow T \text{ with } T \to J \text{ a } \mathbb{G}_{\mathrm{m}}^{\rho-1} \text{-torsor, with } \rho = \mathrm{rkNS}(J).$ Hence need $\mathrm{rk}J(\mathbb{Q}) < g + \rho - 1.$

the lifting exists $\Leftrightarrow \deg(1, f)^* P^x = 0.$

San

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Proof of DGH: a tale of two heights

Theorem (New Gap Principle, Dimitrov–G'–Habegger + Kühne, 2021)

Assume $g \ge 2$. Each $P \in C(\overline{\mathbb{Q}})$ satisfies

$$\#\{Q \in C(\overline{\mathbb{Q}}) : \hat{h}_L(Q-P) \le c_1 h_{\mathrm{Fal}}(J)\} \le c_2$$

for some positive constants c_1 and c_2 depending only on g.

$$\succ Q - P \in C - C \subseteq J$$

- We are comparing:
 - $\hat{h}_L|_{C-C}$ height on *J*, and
 - $h_{Fal}(J)$ height of J

Put all curves "together":

 $\begin{array}{ccc} \mathcal{C}_g & \text{universal curve} \\ \\ \downarrow \\ \mathbb{M}_g & \text{moduli space of curves of genus } g \text{ with level-4-structure} \end{array}$

Proof of DGH: a tale of two heights

Theorem (New Gap Principle, Dimitrov–G'–Habegger + Kühne, 2021)

Assume $g \ge 2$. Each $P \in C(\overline{\mathbb{Q}})$ satisfies

$$\#\{Q \in C(\overline{\mathbb{Q}}) : \hat{h}_L(Q - P) \le c_1 h_{\text{Fal}}(J)\} \le c_2$$

for some positive constants c_1 and c_2 depending only on g.

$$\begin{array}{ccc} \mathcal{C}_{g} \times_{\mathbb{M}_{g}} \mathcal{C}_{g} \xrightarrow{\mathcal{D}_{1}} \operatorname{Jac}(\mathcal{C}_{g}/\mathbb{M}_{g}) & X \subseteq \mathcal{A}_{g} \\ & & & & \\ & & & \\ &$$

- $\succ Q P \in C C \subseteq J$
- We are comparing:
 - $\hat{h}_L|_{C-C} \text{ height on } J, \text{ and}$ $\hat{h}_{Fal}(J) \text{ height of } J$

- > \hat{h} fiberwise, and
- > $h_{\text{Fal}}(J)$ height on the base \mathbb{M}_g .
- ➤ Want to find the correct condition for X such that $\hat{h} \ge ch_{\text{Fal}}$ when restricted on X for some constant c.

Proof of DGH: a tale of two heights

Theorem (GH 2019, DGH 2021)

The followings are equivalent:

 (i) There exists a Zariski open dense subset U of X, and a constant c = c(X) > 0 such that for all x ∈ U(Q),

$$\hat{h}(x) \ge ch_{\mathrm{Fal}}(A_x) - c.$$

(ii) X satisfies a linear algebra property, called non-degenerate.

Non-degeneracy: Habegger 2013, GH 2019, DGH 2021. The definition uses Betti map (Masser-Zannier, Bertrand).

- - E + - E +

Proof of DGH: Non-degeneracy

► $\pi: \mathcal{A} \to S$ an abelian scheme

taking Betti realization / forgetting complex structures of the fibers

≻ $\mathcal{T} \to S$ a local system of real torus ($\mathcal{T}_s = H_1(\mathcal{A}_s, \mathbb{R})/H_1(\mathcal{A}_s, \mathbb{Z})$)

Betti foliation \mathcal{F} on \mathcal{A}

►
$$T_x \mathcal{A} = T_x \mathcal{F} \bigoplus T_x \mathcal{A}_{\pi(x)}$$
 for each $x \in \mathcal{A}(\mathbb{C})$.

Definition

 $X \subseteq A$ is called non-degenerate if $T_x X \subseteq T_x A \to T_x A_{\pi(x)}$ has dimension dim X at some point $x \in X(\mathbb{C})$.

In the terminology of Yuan–Zhang 2021, non-degeneracy is equivalent to: the tautological adelic line bundle $\tilde{\mathcal{L}}_g$ is big when restricted to X (DGH + YZ).

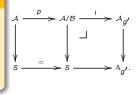
An immediate observation by definition: If dim X > g, then X is degenerate! \rightarrow naive degenerate.

For example, $C_g - C_g = D_1(C_g \times_{M_g} C_g)$ is degenerate!

Proof of DGH: a tool (degeneracy loci) and bigness

As an application of mixed Ax–Schanuel (G') and $X^{deg}(0)$, one proves:

Theorem (G' 2020, Betti rank) *TFAE:* \succ X is degenerate, i.e. $\widetilde{\mathcal{L}}_g|_X$ is NOT big. \succ \exists abelian subscheme \mathcal{B} of $\mathcal{A} \rightarrow S$ such that "a generic fiber of $\iota \circ p|_X$ is naive degenerate", i.e.



Applications of this theorem and beyond:

 $\dim X - \dim(\iota \circ p)(X) > \dim \mathcal{B} - \dim S.$

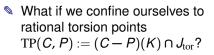
- ≻ $X := \mathcal{D}_M(\mathcal{C}_g^{[M+1]})$ is non-degenerate if $M \ge 3g 2$ (for DGH and K).
- the full Uniform Mordell–Lang Conjecture (G'–Ge–Kühne 2021).
- > $X^{\text{deg}}(1)$ for the Relative Manin–Mumford Conjecture (G'–Habegger 2023).

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

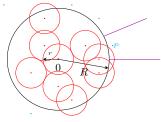
Genus \geq 2: Some further questions related to the rather uniform bound of DGH+K

 $\#C(K) \leq c_2(g)c(g)^{\operatorname{rk} J(K)}$

- Now does $c_2(g)$ grow as $g \to \infty$ (Manin–Mumford constant)?
 - > $c_2(g) \rightarrow \infty$ $(y^2 = x(x-1)\cdots(x-2024)).$
 - Over function fields: ~ g² by Looper–Silverman–Wilms 2022.
 - Over number fields: no explicit formula.



- ▶ Baker–Poonen 2001: $\#TP(C, P) \le 2$ for all but B = B(C) points $P \in C(K)$.
- > Is it possible to make B(C) uniform in g up to replacing 2 by 6?



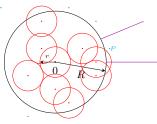
$$\begin{aligned} R^2 &= c_0(g) h_{\text{Fal}}(C) \\ r^2 &= c_1(g) h_{\text{Fal}}(C) \end{aligned}$$

small balls to cover all small points $\leq (R/r)^{\operatorname{rk} J(K)}$ # of points in each ball $\leq c_2$

・ロト ・四ト ・ヨト ・ヨト

Genus \geq 2: Some further questions related to the rather uniform bound of DGH+K

- $\#C(K) \leq c_2(g)c(g)^{\operatorname{rk} J(K)}$
 - Solution Is it true that $c(g) \rightarrow 1$ when $g \rightarrow \infty$, or at least give an absolute upper bound of c(g) (Vojta constant)?
 - > In view of Mumford's Formula $\frac{1}{q} (|P|^2 + |Q|^2 - 2g(P, Q)) + O(|P| + |Q| + 1) ≥ 0.$
 - The angle condition in both inequalities can be improved.
 - A more precise version of Mumford's formula.
 - Arithmetic Statistics: Average number of rational points.
 - > Alpoge ('18): $K = \mathbb{Q}$ and g = 2, before the result of DGH.
 - Bhargava–Gross ('13): K = Q, the average of 2^{rkJ(Q)} is a finite number for hyperelliptic curves having a rational Weierstrass point.



 $\begin{aligned} R^2 &= c_0(g) h_{\text{Fal}}(C) \\ r^2 &= c_1(g) h_{\text{Fal}}(C) \end{aligned}$

small balls to cover all small points $\leq (R/r)^{\operatorname{rk} J(K)}$ # of points in each ball $\leq c_2$

Beilinsin–Bloch height for Gross–Schoen / Ceresa cycles

- > *C* smooth projective curve of genus $g \ge 3$;
- ► $J = \operatorname{Jac}(C);$
- ≻ $\xi \in \text{Pic}^1(C)$ such that $(2g-2)\xi = \omega_C$.

From these data, we obtain homologically trivial 1-cycles:

- 𝔅 (Ceresa) Ce(C) := *i*_ξ(C) − [−1]^{*}*i*_ξ(C) ∈ Ch₁(J).

Theorem (G'–S.Zhang, '24)

There exist positive constants ϵ , c and a Zariski open dense subset U of \mathbb{M}_g defined over $\overline{\mathbb{Q}}$ such that

$$\begin{aligned} \langle \Delta_{\mathrm{GS}}(C), \Delta_{\mathrm{GS}}(C) \rangle_{\mathrm{BB}} &\geq \epsilon h_{\mathrm{Fal}}(C) - c \\ \langle \mathrm{Ce}(C), \mathrm{Ce}(C) \rangle_{\mathrm{BB}} &\geq \epsilon h_{\mathrm{Fal}}(C) - c \end{aligned}$$

for all $[C] \in U(\overline{\mathbb{Q}})$.

Beilinsin–Bloch height for Gross–Schoen / Ceresa cycles

Corollary (Northcott property, G'-S.Zhang '24)

There exists a Zariski open dense subset U of \mathbb{M}_g defined over $\overline{\mathbb{Q}}$ such that for all H, $D \in \mathbb{R}$, we have

 $\#\{[C] \in U(\overline{\mathbb{Q}}): \quad \deg(\mathbb{Q}([C]):\mathbb{Q}) < D, \quad \langle \Delta_{\mathrm{GS}}(C), \Delta_{\mathrm{GS}}(C) \rangle_{\mathrm{BB}} < H\} < \infty.$

The definitions of the two cycles extends to any $e \in \text{Pic}^1(C)$.

Corollary (Lower bound, G'–S.Zhang '24)

There exists a Zariski open dense subset U' of $\mathbb{M}_{g,1}$ defined over $\overline{\mathbb{Q}}$

 $\langle \Delta_{\mathrm{GS},e}(C), \Delta_{\mathrm{GS},e}(C) \rangle_{\mathrm{BB}} \geq 0$

for all $[(C, e)] \in U'(\overline{\mathbb{Q}})$.

Same results for Ceresa cycles.

Ziyang GAO (Leibniz University Hannover, Germany)

Sar

イロトスポトメラトメラト・ラ

Beilinsin–Bloch height for Gross–Schoen / Ceresa cycles

Key steps of the proof:

- > Find an adelic line bundle $\overline{\mathcal{L}}$ on \mathbb{M}_g which defines the Bloch–Beilinsin height for $\Delta_{GS}(C)$ (Zhang 2010, Yuan–Zhang 2021, Yuan 2021);
- ➤ Prove the bigness of the generic fiber of *L*, by studying the non-degeneracy of the associated normal function in the intermediate Jacobian (using idea of G' 2020, and mixed Ax–Schanuel for VMHS independently proved by Chiu and G'–Klingler 2024). We proved a checkable criterion which works for any family of homologically trivial cycles.
- In the proof we defined the Betti strata which gives a foliated structure of the base, and proved that this strata is Zariski closed. application: determine that a generic transcendental point is non-torsion in the Chow group.
- ➤ Non-degeneracy for Δ_{GS}(C) independently proved by Hain 2024 using completely different method.

3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Lang–Silverman and UBC

Conjecture (Lang-Silverman)

Let $g \ge 1$ be an integer. For all number field K, there exist constants $c_1 = c_1(g, K)$, $c_2 = c_2(g, K)$, $c_3 = c_3(g, K)$ with the following property. For each abelian variety A of dimension g defined over K and each $P \in A(K)$, we have

- (i) Either P is contained in a proper abelian subvariety B of A with deg B ≤ c₂ deg A and ord(P) is ≤ c₃ modulo B;
- (ii) $Or \operatorname{End}(A) \cdot P$ is Zariski dense in A and

 $\hat{h}(P) \ge c_1 \max\{h_{\mathrm{Fal}}(A), 1\}.$

An immediate corollary of the Lang–Silverman Conjecture is the following widely open Uniform Boundedness Conjecture.

Conjecture (Uniform Boundedness Conjecture)

For each abelian variety A of dimension $g \ge 1$ defined over \mathbb{Q} , we have

 $#A(\mathbb{Q})_{\mathrm{tor}} \leq B(g).$

Ziyang GAO (Leibniz University Hannover, Germany)

3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Thanks!

< □ > < □ > < □ > < □ > < □ > = Ξ

590