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I. Two trichotomies

Manin’s talk, Novosibirsk 1989. Topological trichotomy: genus 0,
genus 1, higher genus. Reflected in arithmetic. Gödel.

Let X be a set defined by some formulas in a structure M . We say
X is minimal if it is infinite, but cannot be definably split into two
infinite sets; and this is uniform, i.e. for every formula ϕ(x, y), for
some n, for all b |{x ∈ X : ϕ(x, b)}| has at most m points, or all but
m points. (For M = (C,+, ·), minimal sets curves (± finite sets.)
An algebraic function (definable in M) from Y to X is a definable
subset of Y ×X, whose projection to Y is onto and ≤ m-to-one.
The relation: x ∈ acl(x1, . . . , xn) has the properties of a
pre-geometry; it thus gives rise to a dimension theory on definable
subsets of Xn.
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Zilber’s trichotomy

A classification of minimal sets:
Trivial geometry. No definable families of irreducible subsets of
Xn, other than ones like Xn−1 × {b} .
Locally modular. No high-dimensional families of irreducible subsets
of Xn.
In this case one can prove existence of an abelian group A, isogenous
to X, such that every definable subset of An is a finite Boolean
combination of cosets of definable subgroups.
Field-like: high-dimensional families exist.
We say Zilber’s conjecture holds (in M) if every field-like minimal X
is isogenous to an algebraically closed field.
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The need for intermediaries

A first match : given a curve C over C, consider the structure con-
sisting of all rational maps Cn → C.
Genus 0 ↔ fieldlike,
genus 1 ↔ locally modular,
higher genus ↔ trivial alg. closure geometry.
However not much arithmetic structure is visible in this interpreta-
tion.
We could try to simply take Q-points in place of C-points; but this
begs the question in genus ≥ 1, and blows up (Gödel, J. Robinson)
in genus 0.
To make a real connection, need intermediate theories that see more
of the diophantine geometry, but are model-theoretically tractable.
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Differential fields.

Char. p > 0 equivalent to separably closed fields with [K : Kp] = p.
Axiomatizability of existentially closed differential fields (A.
Robinson, Blum)
Likewise separably closed fields in char. p > 0 (with [K : Kp] = p.)
(Ershov, Delon).

Minimal sets exist; Zilber’s conjecture holds.

An abelian variety A over a differential field K admits a definable
map m : A → Kn into a vector group. (Picard-Fuchs, Manin, Buium
in char. 0). The Manin kernel A0 = m−1(0) is finite-dimensional.
Hence any finitely generated subgroup Γ of A is contained in a finite-
dimensional definable subgroup Γ̃ of A (namely m−1(V ), where V is
the k-space generated by m(Γ), k = the constant field.).
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Structure of the Manin kernel and
Mordell-Lang for function fields

Let A be an Abelian variety with zero trace to the constant field.
A0 the Manin kernel.
Let Y ⊂ A be minimal (cut out by some differential equations).
The geometry of Y cannot be trivial; this is guaranteed by the group
structure.
If Y is field-like, it is isogenous to a definable field. But it can
be shown that the only field of finite dimension interpretable by
differential equations is the field of constants. This leads to Y being
isotrivial.

Hence Y is locally modular. With a little further analysis one shows
A0 is locally modular.
This already shows that for any subvariety X of A, X∩A0 is a coset
of a group.
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An additional idea associated with the global effect of minimal sets,
is needed to bridge the gap between Γ̃ and A0. Analogy with Poo-
nen’s Mordell-Lang + Bogomolov.
Mordell-Lang for function fields follows.
En route we saw that The nontrivial minimal sets, up to isogeny,
are just the Manin kernels of simple, non-isotrivial abelian variety,
and the field of constants.

Further results (over number fields, and for Drinfeld modules by
Scanlon) use difference fields as an intermediary instead. This re-
quires also an extension of stability theory and the Zilber trichotomy
(Chatzidakis-H.)
Could there be a model-theoretically tame theory capturing (part
of) the geometry of heights?
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II. The theory GVF

Three presentations (from Ben-Yaacov, H., Destic, Szachniewicz,
soon on ArXiv.)

1) Direct axiomatization via Weil heights:

A GVF is a field F along with Sym(n)-invariant real-valued func-
tions h : Pn(F ) → R≥0 such that:

• h((x1 : . . . : xn)) ≤ h((x0 : . . . : xn)), with equality if x0 = 0.

• h((xiyj)i,j) = h((xi)) + h((yj)), and

• h((x1 + y1, . . . , xn + yn)) ≤ h(x1, . . . , xn, y1, . . . , yn) + e.
When e = 0, we talk of GVFs of function field type.

• Write ht(a) = h(a : 1). Then ht(1) = 0
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Aside: You may have noticed these are real-valued formulas, whereas
traditionally logical formulas can take two values. Surprisingly little
adjustment is needed.

Additional definable R-valued functions are formed by closing under
+, ·, inf, sup and uniform limits. In case inf, sup are not used, we
talk of qf-definable functions.
A set of the form X = {x : f(x) = 0} will be called closed or∧
-definable.

X is minimal if (in some model) it is infinite, while (in any model
of the axioms) any formula ϕ(x) takes a unique generic value α on
X; any other value is taken only finitely often.

All the basic results of logic (notably compactness) remain valid.
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Alternative presentations

2. More general local terms.
Usual field operations +,−, · and relations =, ̸= on F .
A symbol Rt for each continuous, positively homogeneous function
on Rn.
Intended intepretation over a number field:

Rt(x1, . . . , xn) =
∑
p

t(vpx1, . . . , vpxn)

where the vp are the valuations and − log absolute values of the
field, normalized so that the product formula holds:

∑
p vp(x) = 0.
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Axioms for Rt presentation

1. (F,+, ·) is an integral domain.

2. {Rt} Compatible with permutations of variables, dummy vari-
ables.

3. (Linearity:) Rt1+t2 = Rt1 + Rt2 . Rαt = αRt.

4. (Positivity) For an affine variety X ⊂ An: If t(v(x)) ≥ 0 for
every absolute value and every x ∈ X, then Rt(a) ≥ 0 for
a ∈ X.

5. (Product formula) RId(x) = 0 for x ̸= 0.
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Weil heights are given by the special case t(u0, . . . , un) =
min(u1, . . . , un). They suffice to capture all Rt. But the Rt

presentation makes it clear that we have not lost sight of local
data. For instance, employing max(−v(2), 0) which vanishes on
non-archimdean v, we can probe the measure on archimedean
valuations / embeddings into C, likewise Qp..

3. Measure theoretic presentation (cf. Gubler’s M-fields, Chen-
Moriwaki adelic curves) For any (countable) K |= GV F , there exists
a measure µ on the space of absolute values of K, v(x) = − log |x|,
such that (v 7→ v(a)) is in L1(µ), and

Rt(x1, . . . , xn) =

∫
t(v(x1), . . . , v(xn))dµ(v)

µ is unique up to a suitable renormalization (v with mass m)⇝ (2v
with mass m/2.)
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A word about ultraproducts or logical compactness

Theorem (Gödel, Skolem, Malcev, Tarski, A. Robinson,  Loś).
Given a sequence Mi of structures for some language, one can find
a subsequence Mj and a ‘limit’ M such that a sentence is true in
M iff it is true in almost every Mj.
In the continous version, where a formula takes real values, ϕMj →
ϕM .

Examples:
1) (L = {+, ·}). Lefschetz principle - passage from large char. p > 0
to char 0 or back - as used by e.g. Ax,Deligne, Mori, Kontsevich...
2) Fp(p = 2, 3, · · · ) → F , F a field of characteristic 0, with exactly
one finite extension of any degree n.
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3) L = language of GVFs. Mi = Q[1/i], a renormalization of the
GVF Q; use the standard Weil heights divided by i. Then the limit
M is a GVF of function field type. The set of elements of height 0
form a subfield, the constant field, containing Q. We have k(t) ≤ M ,
where ht(k) = 0 and ht(t) = 1.
(Note e.g. the archimedean places have measure 1/i in Q[1/i], hence
measure 0 in M , as do the 2-adic, 3-adic, . . ..)
Axiomatization has uniformity, effectiveness, transfer as standard
consquences. If a statement is true for every model of the axioms
and not only the one we are interested in, then it must be true
uniformly in parameters. Thus Tarski proved polynomial bounds on
distance from a singularity in the prehistory of o-minimality.)
For GVFs this makes it possible to transfer some statements from
function fields to number fields. Let us see this for a version of the
”gap principle” from the talks of Gao, Kühne and Yuan.
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Transfer principle, uniformity

We take a version of the ’gap principle’ as an example for both
transfer (function fields to number fields) and uniformity.

Let A be an Abelian variety over a GVF K. There exists a unique
maximal

∧
-definable subgroup of bounded height; the Bogomolov

kernel A0 of A. For any symmetric ample line bundle L on A, A0

can be defined by ĥL(x) = 0.
We say A is isotrivial if k := {x ∈ K : ht(x : 1) = 0} is a subfield of
k, and A descends to k.
We say that the Bogomolov conjecture holds over a GVF K if for any
non-isotrivial Abelian variety A/K, for subvariety X of A containing
no positive-dimensional translate of a subgroup of A, no contained
in a proper coset, X ∩A0 is finite.
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Take a family (A(s), L(s)) : s ∈ S) of Abelian varieties equipped
with ample symmetric line bundle; parameterized by some con-
structible S ⊂ Pn. Let ĥ denote the corresponding canonical height
on any A(s). ht just denotes Weil height on projective space.
Also consider a subvariety X(t), parameterized non-redundantly by
some T → S. Assume for simplicity that X(t) is a curve of genus
> 1.

Proposition. (1) implies (2):

1. The Bogomolov conjecture holds over every GVF of char. 0.

2. (Gap principle) There exist positive constants c1, c2 such that
for any s ∈ S(Q) and t ∈ T (Q) above s, and P ∈ A(Q),

♯{Q ∈ Xt(Q) : ĥ(Q− P ) ≤ c1ht(s)} ≤ c2

Proof. Replacing Q by Q− P and the family {Xt : t} by {Xt − P :
(t, P ) ∈ T ×A} (made non-redundant), we reduce to the case P = 0.
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Suppose (2) fails, and choose sn, tn with

♯{Q ∈ Xtn(Q) : ĥ(Q) ≤ ht(sn)/n} > n

Choose Qn,1, . . . , Qn,n demontrating this. Let

(K, s, t,Q1, Q2, . . .)

be a limit of

(Q[1/ht(t)], sn, tn, Qn,1, . . . , Qn,n, 0, 0, . . .)

A := As, X := Xt. Note htK(t) = 1. Also, ĥ(Qi) ≤ ht(s)/n for each

n, so ĥ(Qi) = 0. Thus each Qi ∈ X ∩ A0. By (1), A is isotrivial.
Since the Qi are Zariski dense in X, X is also isotrivial; so t ∈ T (k),
contradicting ht(t) = 1.
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On the other hand, existential closedness of k(t) will imply that
(1) for function-field type GVFS of the same characteristic as k is
equivalent to uniform Bogomolov over k(t). And a similar statement
for Q. Thus for this application, the bridge is used in the opposite
direction! But the point here is the general bridge itself.
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Existentially closed GVFs

K is existentially closed if any solution to a GVF formula in a GVF
extension of K, has an approximate solution in K.

Problem 0.1. Is the class of existentially closed GVFs axiomatiz-
able?

If so, an arbitrary formula will be equivalent to an ‘existential’ one,
infy |ϕ(x, y)| = 0, with ϕ q.f.
As we do not yet have an answer, we need to work at the level of qf
formulas (qf- stability, qf-minimality.)

N.B. unlike the case of local fields, somewhat like the case of Ran,
there are many GVF-qf-algebraic functions that are not algebraic
in the usual sense. An example, believed to generate them all, is
the Minkowski smallest lattice vector in an adelic guise (Harder-
Narasimhan canonical slope filtration of normed vector space over a
GVF K.)
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Theorem 1 (Szachniewicz). Q̄ is existentially closed as a globally
valued field.

Micha l Szachniewicz, existential closedness of Q̄ as a globally valued
field via Arakelov geometry, ArXiv 2306.06275
A similar theorem for the function-field type GVF k(t) is proved in
notes by Ben Yaacov-H, [GVF2], Arxiv.
Micha l’s theorem uses in particular recent results of Wilms. The
function field version uses an extension of results of Boucksom-
Demailly-Paun-Peternell and Boucksom-Favre-Jonsson.

Let’s look at some soft corollaries.

1. Effectiveness given finiteness

Let X be variety over Q, and consider algebraic solutions.
If one bounds the degree but not the height, even if one knows that
the number of solutions of degree ≤ d is finite, there is still no known
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algorithm to find them effectively.(Is this provable)?On the other hand
if the height but not the degree is bounded:

Corollary 1. Assume as known that X has only finitely many so-
lutions in Q̄ of height < h0. Then these solutions can be computed
effectively.

Proof. If Q̄ ≤ L is any GVF extension, all solutions of X of height
< h0 must lie in Q̄. Otherwise, one can recursively find infinitely
many solutions in Q̄: having found a1, . . . , an, find a new solution
b in some GVF extension; by the e.c. theorem, a solution b′ exists
in Q̄ with b′ /∈ {a1, . . . , an} and ht(b′) as close as we like to ht(b),
hence < h0.
In particular the number of solutions is bounded in any GVF.
Search for algebraic solutions s1, . . . , sn and a formal proof from
the GVF axioms that these are all the elements of X of height at
most h0. This is guaranteed to terminate, and in particular identify
s1, . . . , sn.
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Corollary 1 also works with additional qf GVF constraints, e.g.
canonical height bounds, local conditions.

Corollary 2. Every GVF is a subfield (with induced height struc-
ture) of an ultrapower of k(t) for some k, or of Q.

Corollary 3. A finiteness statement (e.g. Bogomolov) is true in
every GVF extension of Q if and only if it is true in Q uniformly in
parameters.

Corollary 4. Using Theorem 1, a sharp “statistical Fekete-Szego
criterion” becomes available. Same Chebyshev number criterion as
for the topological approximations.

To illustrate, we give a simple statement in the ’forward’ direction.
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A statistical Fekete-Szego lemma

Lemma. Let ai be an infinite sequence of algebraic integers of
bounded height, Ai the Galois orbit of ai. Let C be a compact
subset of C. Assume: for any ϵ > 0 and any open neighborhood U
of C, for large enough i,

|Ai ∩ U |
Ai

> 1 − ϵ.

Then C has capacity ≥ 1, i.e. there exists a probability measure µ
on X such that

∫
log(|x− y|)dµ(x)dµ(y) ≥ 0.

Proof: Let (K, a) be an ultraproduct of (Q, ai). The measure µ
associated with the extension Q ≤ Q(a) for the real place must
concentrate on C. For each p-adic place, the measure concentrates
on Zp.
Let (K∗, a, a′) be an ultraproduct of (K, a, ai). The measure on A2

associated with Q(a, a′)/Q is the product measure µ × µ, at each
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place. Let b = a − a′. The measure associated with Q(b) satisfies∫
v(b)dv = 0, and for each p-adic place the integral is ≥ 0; hence at

the real place
∫
− log |b|vdv ≤ 0, so

∫
log(x− y)dµ(x)dµ(y) ≥ 0.
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Structure of GVF extensions

A GVF extension K/F lives on a normal variety X if K = F (X),
and the associated measure on V al(K/F ) concentrates on divisors
of X.

Any GVF extension L/F of alt. closed fields is a direct limit of such,
with decreasing ample heights; moreover approaching L uniformly
in families of blowups.
Let alb : X → A be the Albanese variety of X, J = Pic0(X) the

dual abelian variety, P ≤ A× J the Poincaré divisor. Let ĥP be the
canonical height with respect to P; it is bilinear, and ĥP(c, x) defines
a bounded linear functional on H, the completion of J(K) with
respect to an ample canonical height on J . Hence hP(c, x) = (x, nw)
for a unique nw ∈ H.
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Let K be a GVF, for simplicity with discrete GVF measure µK .
Let D1, . . . , DdimNS(X) be very ample divisors on X generating
NS(X)⊗Q.

Proposition. Let L = K(c) be a finitely generated GVF extension,
living on X. Then L determines, and is determined by:

1. A probability measure on Xv(C) or on the Berkovich space Xv

for each v ∈ Supp(µK).

2. htDi
(c) for i = 1, . . . ,dimNS(X).

3. The Néron-Weil character nw(L/K).

We already see that Abelian varieties play a fundamental role within
GVF formulas.
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III. Minimal types

Theorem 2. GVF is stable for qf formulas.

Uses structure of GVF extensions, along with a transcendence style
lema on existence of low degree polynoials vanishing on all general-
ized codimension 2 diagonals of a high power of X, joint with Ben
Yaacov and Adiprasito.
One definition is that every qf type is definable. For instance, any
sequence (ai) ∈ Qn

has a subsequence such that for any b ∈ Qm
,

ht(ai, b) converges to δ(b), δ a GVF definable function.

Corollary. Any infinite
∧
-definable set contains a qf minimal one.

Problem 0.2. Structure of minimal (qf) types?
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Conjecture 0.3. • Zilber’s conjecture holds for minimal types
of GVF.

• The nontrivial qf-minimal types are (at least weakly) minimal.

• Every nontrivial qf-minimal type admits an isogeny to the Bo-
gomolov kernel A0 of a non-isotrivial simple abelian variety A,
or A = Gm.

• A0 is field-like only when A = Gm and ht(2) = 0.

In particular, for a non-isotrivial simple abelian variety A, or A =
Gm over a number field, minimality along with local modularity
implies that A0 is a pure module over End(A), perhaps enriched
with some constants.
qf-minimality of A0 includes Zariski minimality (Bogomolov’s
conjecture) and adelic minimality (equidistribution). Many
cases are proved by Bilu, Chambert-Loir, Szpiro-Ullmo-
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Zhang, Zhang, Autissier, Gubler, Yamaki, Gao-Habbegger,
Cantat-Gao-Habegger-Xie. Xie-Yuan, Chen-Moriwaki.
In addition qf-minimality includes the GVF living on A, ( ”no codi-
mension two mass”); this would give at least weak qf minimality.
Strict qf minimality includes finally determination of htDi

(c) and
the Néron-Weil character. This last vanishes by Cauchy-Schwarz
(a, c) ≤ ||a||||c||, and similarly the canonical heights ĥtDi(c).
The further hypothesis of minimality for existential formulas, beyond
qf-minimality, includes an amalgamation statement. Only in the
case of A = Gm over function fields is there any evidence for this;
in this case A0 is minimal with respect to étale projections of qf
formulas too.
Could the strategy of the Manin kernel case apply here?
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A step beyond qf stability

Proposition. For A = Gm, over a function-field type GF, A0 is
minimal with respect to étale projections of qf formulas too.
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