Rationality in Arithmetic Dynamics

Nicole Looper

University of Illinois at Chicago
July 11, 2024

Notation

K is a number field unless otherwise specified
$f: \mathbb{P}_{\bar{K}}^{N} \rightarrow \mathbb{P}_{\bar{K}}^{N}$ is a morphism of degree $d \geqslant 2$ ($N=1$ case will be focus $)$

$$
f^{n}:=\underbrace{f \circ f \cdots \circ f}_{n \text { times }}
$$

Let $\operatorname{Preper}(f, K)=\left\{P \in \mathbb{P}^{N}(K)\right.$ preperiodic under $\left.f\right\}$.
A preperiodic point $P \in \mathbb{P}^{N}(\bar{K})$ is one such that

$$
\left|\left\{f^{i}(P)\right\}_{i=0}^{\infty}\right|<\infty .
$$

$$
p \longrightarrow f(p) \longrightarrow f^{(2)}(p) \longrightarrow \cdots \longrightarrow f^{(j)}(p)
$$

Forward Orbits

A preperiodic point $P \in \mathbb{P}^{N}(\bar{K})$ is one such that

$$
\left|\left\{f^{i}(P)\right\}_{i=0}^{\infty}\right|<\infty
$$

The canonical height of $P \in \mathbb{P}^{N}(\bar{K})$ is

$$
\begin{gathered}
\hat{h}_{f}(P)=\lim _{n \rightarrow \infty} \frac{1}{d^{n}} h\left(f^{n}(P)\right) . \\
\hat{h}_{f}(P)=0 \Longleftrightarrow P \text { is preperiodic under } f
\end{gathered}
$$

Forward Orbits

We'll focus on two kinds of instances of K-rationality:
(1) K-rationality of points of small canonical height (especially preperiodic points)
(2) K-rational points on higher genus curves and their connection to forward orbits

Uniform Boundedness Principles

Let K be any field, and let \mathcal{F} be a family of morphisms $f: \mathbb{P}_{\bar{K}}^{N} \rightarrow \mathbb{P}_{\bar{K}}^{N}$.

- We say that \mathcal{F} satisfies the Uniform Boundedness Principle (UBP) over K if there is an $A=A(\mathcal{F}, K)$ such that for any $f \in \mathcal{F}(K)$,

$$
|\operatorname{Preper}(f, K)| \leqslant A
$$

- We say that \mathcal{F} satisfies the Strong Uniform Boundedness Principle (SUBP) over K if for every $D \geqslant 1$ there is a $B=B(\mathcal{F}, D)$ such that for any extension L / K of degree $\leqslant D$ and any $f \in \mathcal{F}(L)$,

$$
|\operatorname{Preper}(f, L)| \leqslant B
$$

Examples

- Mazur-Kamienny-Merel: Lattès maps over $\overline{\mathbb{Q}}$ (degree >1 maps on $\mathbb{P}_{\overline{\mathbb{Q}}}^{1}$ descended from endomorphisms on elliptic curves over $\overline{\mathbb{Q}}$) satisfy the SUBP over \mathbb{Q}
- Doyle-Poonen (2020): For k a field, $K=k(t)$, and $d \geqslant 2$ with $\operatorname{char}(k) \nmid d$,

$$
\mathcal{F}=\left\{z^{d}+c: c \in \bar{K} \backslash \bar{k}\right\}
$$

satisfies the SUBP over K.

Another example

Taking a trivial family $\mathcal{F}=\{f\}$ addresses Northcott and Bogomolov-style results.

- Dvornicich-Zannier (2007): If K is a number field, and $f \in K[z]$ is any polynomial of degree $d \geqslant 2$ not conjugate to $\pm z^{d}$ or $T_{d}(\pm z)$, where T_{d} is the d th Chebyshev polynomial, then f has only finitely many preperiodic points in $K^{\text {cyc }}$, the maximal cyclotomic extension of K.

In other words, $\mathcal{F}=\{f\}$ satisfies the UBP over $K^{\text {cyc }}$.

Uniform Boundedness Conjecture

Uniform Boundedness Conjecture (Morton-Silverman, 1994)

Let $N \geqslant 1$, let $d \geqslant 2$, and let K be a number field. Let $f: \mathbb{P}_{K}^{N} \rightarrow \mathbb{P}_{K}^{N}$ be a degree d morphism defined over K. There is a $B=B(N, d,[K: \mathbb{Q}])$ such that $|\operatorname{Preper}(f, K)| \leqslant B$.

Uniform Boundedness Conjecture restated

Let K, N, d be as above. The family \mathcal{F} of degree d morphisms $\mathbb{P}_{\bar{K}}^{N} \rightarrow \mathbb{P}_{\bar{K}}^{N}$ satisfies the SUBP over \mathbb{Q}.

Example Uniform Boundedness Results

Theorem 1 (L., 2021)

Assume the abcd-conjecture. Let:

- K be a number field
- $d \geqslant 2$
- \mathcal{F} be the set of degree d polynomials defined over K

Then \mathcal{F} satisfies the UBP over K.
(A char. 0 function field analogue holds too.)
$A b c d$ is a generalization of the abc-conjecture.

Two-Step Summary of Proof of Theorem 1

Step 1: Use the geometry of preperiodic points in the v-adic filled Julia sets to deduce arithmetic information about typical pairwise differences of preperiodic points.

Step 2: Use arithmetic info about pairwise differences to derive a contradiction of $a b c$ or $a b c d$ if too many of these differences lie in K.

Example Uniform Boundedness Results

Theorem 2 (L., 2021)

Let $\mathcal{F}=\{f\}$, where $f \in K[x]$ is a polynomial with a periodic critical point $\neq \infty$ and at least one place of bad reduction.* Then \mathcal{F} satisfies the UBP over K^{ab}.

* bad reduction here means not potentially good reduction

$a b c$ and uniform boundedness

A useful prototype to start with is an analogue in the Diophantine setting.

Theorem (Hindry-Silverman, 1988)

Assume the abc-conjecture. (An unconditional analogue holds over one-dimensional function fields of char. 0.)

Let:

- E / K be an elliptic curve with j-invariant j_{E}
- $\widehat{h_{E}}(P)$ be the Néron-Tate height of a K-rational point $P \in E(K)$.

Then there are explicit constants $c=c(K)>0$ and $N=N(K)$, independent of E, such that there are at most N points $P \in E(K)$ satisfying

$$
\widehat{h_{E}}(P) \leqslant c \max \left\{h\left(j_{E}\right), 1\right\} .
$$

Outline of Hindry-Silverman

(1) $a b c$ matters through the use of Szpiro's conjecture: given $\epsilon>0$, there is a constant $c=c(K, \epsilon)$ such that

$$
\log N_{K / \mathbb{Q}} \mathscr{D}_{E / K} \leqslant(6+\epsilon) \log N_{K / \mathbb{Q}} \mathscr{F}_{E / K}+c,
$$

where $\mathscr{D}_{E / K}$ is the minimal discriminant and $\mathscr{F}_{E / K}$ is the conductor of E / K.

In other words, the valuations of $\mathscr{D}_{E / K}$ should not be too large on average.

Outline of Hindry-Silverman

(2) For non-archimedean places v, there are two cases:

- $\left|j_{E}\right|_{v} \leqslant 1$ (i.e., potential good reduction at v)
- $\left|j_{E}\right|_{V}>1$. Tate uniformization gives maps

$$
\begin{aligned}
& E\left(K_{v}\right) \longrightarrow K_{v}^{\times} / q^{\mathbb{Z}} \longrightarrow \mathbb{R} /\left(\log \left|j_{E}\right|_{v} \mathbb{Z}\right) \\
& u \log |u|_{v}
\end{aligned}
$$

where $q \in K_{v}$ with $|q|_{v}=\left|1 / j_{E}\right|_{v}<1$.

Outline of Hindry-Silverman

Two cases:

- $\left|j_{E}\right|_{v} \leqslant 1$ (i.e., potential good reduction at v)
- $\left|j_{E}\right|_{v}>1$. Assuming for simplicity that E has ss reduction, Tate uniformization gives maps

$$
\begin{aligned}
& E\left(K_{v}\right) \xrightarrow{\sim} K_{v}^{\times} / q^{\mathbb{Z}} \longrightarrow \mathbb{R} /\left(\log \left|j_{E}\right|_{v} \mathbb{Z}\right) \\
& u \log |u|_{v}
\end{aligned}
$$

where $q \in K_{v}$ with $|q|_{v}=\left|1 / j_{E}\right|_{v}<1$.

* If $P, Q \in E(K)$ map to distinct places on the circle, then their positions completely determine $\lambda_{\nu}(P-Q)$.

Outline of Hindry-Silverman

Within this bad reduction situation, two cases:
(1) $v(q)=v\left(1 / j_{E}\right) \leqslant 6$
(2) Otherwise.

Case (1) tells us that points $P \in E(K)$ can only map to a restricted part of the circle:

whereas (2) imposes no restriction on the position of the points.

Outline of Hindry-Silverman

Upshot: If $P_{1}, \ldots, P_{N} \in E(K)$ are pairwise distinct and any significant "proportion" of bad places falls into Case (1), then replace with $Q_{1}=[60] P_{1}, \ldots, Q_{N}=[60] P_{N}$

If $N \gg 1$ and there are N^{\prime} distinct Q_{i},

$$
\frac{1}{N^{\prime}\left(N^{\prime}-1\right)} \sum_{v \in M_{K}^{0}} \sum_{Q_{i} \neq Q_{j}} \lambda_{v}\left(Q_{i}-Q_{j}\right) \geqslant C \sum_{v \in M_{K}^{0}} \log ^{+}\left|j_{E}\right|_{v}
$$

for some explicit $C>0$ independent of E.

Outline of Hindry-Silverman

If $N \gg 1$ and there are N^{\prime} distinct Q_{i},

$$
\frac{1}{N^{\prime}\left(N^{\prime}-1\right)} \sum_{v \in M_{K}^{0}} \sum_{Q_{i} \neq Q_{j}} \lambda_{v}\left(Q_{i}-Q_{j}\right) \geqslant C \sum_{v \in M_{K}^{0}} \log ^{+}\left|j_{E}\right|_{v}
$$

for some explicit $C>0$ independent of E.
On the other hand, if nearly all bad places fall into Case (2), then Szpiro's Conjecture is violated.

A separate combinatorial argument handles the archimedean places.

Uniform Boundedness in higher dimensions

One might ask whether Hindry-Silverman's approach can be ported to families of higher-dimensional abelian or Jacobian varieties.

- Skeleton:

- Szpiro's conjecture analogue: there are analogous upper bounds on the average number of components of the Néron model at places of bad reduction, which follow from abc

Uniform Boundedness in higher dimensions

Problem: normalized local heights don't sum to the global canonical height. Instead,

$$
\hat{h}_{\Theta}(P)=\sum_{v \in M_{K}} \lambda_{v, \Theta}(P)+\kappa
$$

for some κ.

Thus any higher-dimensional analogue of

$$
\frac{1}{N^{\prime}\left(N^{\prime}-1\right)} \sum_{v \in M_{K}^{0}} \sum_{Q_{i} \neq Q_{j}} \lambda_{v}\left(Q_{i}-Q_{j}\right) \geqslant C \sum_{v \in M_{K}^{0}} \log ^{+}\left|j_{E}\right|_{v}
$$

is not useful unless we can also prove this lower bound for $\frac{1}{N^{\prime}\left(N^{\prime}-1\right)} \sum_{v \in M_{K}^{0}} \sum_{Q_{i} \neq Q_{j}} \lambda_{v}\left(Q_{i}-Q_{j}\right)+\kappa$.

Uniform Boundedness in higher dimensions

Solution: Replace $\operatorname{Avg} \lambda_{v}\left(P_{i}-P_{j}\right)$ with a generalized Vandermonde matrix evaluated at a certain basis $\left\{\eta_{j}\right\}$ of global sections of \mathcal{L}^{n} for \mathcal{L} very ample:

$$
V_{m, v}\left(P_{1}, \ldots, P_{m}\right)=-\frac{1}{n} \log \left|\operatorname{Det}\left(\eta_{j}\left(\widetilde{P}_{i}\right)\right)\right|_{v}+\sum_{i} \hat{H}_{v}\left(\widetilde{P}_{i}\right)
$$

where $m=h^{0}\left(\mathcal{L}^{n}\right)$ and \hat{H}_{v} is a homogeneous escape-rate function.

Theorem (L., '24)

The functions $V_{m, v}$ satisfy an Elkies-type bound: There exists a C such that for all $n \geqslant 2$, all v and all P_{1}, \ldots, P_{m} on the abelian variety,

$$
\frac{1}{m} V_{m, v}\left(P_{1}, \ldots, P_{m}\right) \geqslant \frac{-C \log n}{n}
$$

Uniform Boundedness in higher dimensions

Theorem (L., '24)

The functions $V_{m, v}$ satisfy an Elkies-type bound: There exists a C such that for all $n \geqslant 2$, all v and all P_{1}, \ldots, P_{m} on the abelian variety,

$$
\frac{1}{m} V_{m, v}\left(P_{1}, \ldots, P_{m}\right) \geqslant \frac{-C \log n}{n}
$$

Remarks:

- This result holds for general polarized dynamical systems.
- A Lehmer-style result on points of small canonical height on abelian varieties follows, over product formula fields having perfect residue fields. The bound has the form

$$
\hat{h}_{\mathcal{L}}(P) \geqslant \frac{C^{\prime}}{[K(P): K]^{2 \operatorname{dim}(A)+3+\epsilon}}
$$

K-rationality in the arithmetic of infinite forward orbits

In the function field setting, the following strengthening of Mordell is well-known.

Theorem (Height Uniformity)

Let X be a nice algebraic curve of genus $\geqslant 2$ over a one-dimensional, characteristic 0 function field K, and let $D \geqslant 1$. There are constants C_{1} and C_{2} depending on X, K, a chosen height h, and D such that for all $P \in X(L)$ with $[L: K] \leqslant D$,

$$
h(P) \leqslant C_{1} \cdot \operatorname{genus}(L)+C_{2} .
$$

The constants C_{1} and C_{2} can be given very explicitly in the case of hyperelliptic curves $y^{2}=f(x)$.

K-rationality in the arithmetic of infinite forward orbits

Number field analogue:

Conjecture (Height Uniformity/Discriminant Conjecture)

Let X be an algebraic curve of genus $\geqslant 2$ over a number field K, and let $D \geqslant 1$. There are constants C_{1} and C_{2} depending on X, K, a chosen height h, and D such that for all $P \in X(L)$ with $[L: K] \leqslant D$,

$$
h(P) \leqslant C_{1} \cdot \log \left|\Delta_{L}\right|+C_{2}
$$

The Height Uniformity Conjecture has deep connections to the arithmetic of forward orbits.

A couple of examples:
(1) Primitive prime divisors, and hence arboreal representations
(2) Liminfs of the Néron-Tate height on curves embedded into their Jacobians (i.e., quantitative Bogomolov)

Primitive prime divisors

We restrict our discussion to polynomial maps $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$.

Definition

We say that a prime \mathfrak{p} of K is a primitive prime divisor of $f^{n}(\alpha)$ if:

- $v_{\mathfrak{p}}\left(f^{n}(\alpha)\right)>0$, and
- $v_{\mathfrak{p}}\left(f^{m}(\alpha)\right) \leqslant 0$ for all $f^{m}(\alpha) \neq 0$ with $m<n$.

Example: $f(x)=x^{2}-7 / 4, \alpha=0$
$0 \mapsto-7 / 4 \mapsto 21 / 16 \mapsto-7 / 256 \mapsto-114639 / 65536$
Here, $f^{3}(0)$ fails to have a primitive prime divisor.

PPDs: specified multiplicities

Leveling up, we might ask for specific multiplicities in the prime divisors.
Example: the Sylvester sequence is given by the forward orbit of 2 under $f(x)=x^{2}-x+1$:

$$
2 \mapsto 3 \mapsto 7 \mapsto 43 \mapsto 1807=13 \times 139 \ldots
$$

It appears that each term in the sequence is squarefree, but this is not yet known to be true.

PPDs: specified multiplicities

A simple trick allows us to connect PPDs to points on higher genus curves.

Suppose

$$
f^{n}(\alpha)=0 \bmod \mathfrak{p},
$$

and that

$$
f^{k}(\alpha)=0 \bmod \mathfrak{p}
$$

for some $0 \leqslant k \leqslant n-1$. As $f^{n}(\alpha)=f^{n-k}\left(f^{k}(\alpha)\right)$, this is saying that

$$
f^{n-k}(0)=0 \bmod \mathfrak{p}
$$

Thus, for any non-primitive prime divisor \mathfrak{p} of $f^{n}(\alpha)$, either

$$
\mathfrak{p} \mid f^{j}(0) \text { for some } 0 \leqslant j \leqslant\lfloor n / 2\rfloor
$$

or

$$
\mathfrak{p} \mid f^{j}(\alpha) \text { for some } 0 \leqslant j \leqslant\lfloor n / 2\rfloor .
$$

PPDs: specified multiplicities

Assume for simplicity that $f^{3}(X)$ is separable, and that \mathcal{O}_{K} is a PID.
For α having infinite forward orbit under f, and $n \geqslant 4$, write

$$
d_{n} y_{n}^{2}=f^{n}(\alpha)
$$

with d_{n} squarefree.
We have

$$
d_{n} y_{n}^{2}=f^{3}\left(f^{n-3}(\alpha)\right)
$$

so $\left(f^{n-3}(\alpha), \sqrt{d_{n}} y_{n}\right)$ is a quadratic point on the higher genus curve

$$
Y^{2}=f^{3}(X)
$$

The Height Uniformity Conjecture says that for $L=K\left(\sqrt{d_{n}}\right)$,

$$
\operatorname{genus}(L) \geqslant \frac{1}{C_{1}}\left(h\left(f^{n-3}(\alpha)\right)-C_{2}\right) .
$$

PPDs: specified multiplicities

We have

$$
d_{n} y_{n}^{2}=f^{3}\left(f^{n-3}(\alpha)\right)
$$

so $\left(f^{n-3}(\alpha), \sqrt{d_{n}} y_{n}\right)$ is a quadratic point on the higher genus curve

$$
Y^{2}=f^{3}(X)
$$

The Height Uniformity Conjecture says that for $L=K\left(\sqrt{d_{n}}\right)$,

$$
\operatorname{genus}(L) \geqslant \frac{1}{C_{1}}\left(h\left(f^{n-3}(\alpha)\right)-C_{2}\right)
$$

In other words,

$$
h\left(d_{n}\right) \gg h\left(f^{n-3}(\alpha)\right)
$$

Primitive prime divisors: specified multiplicities

OTOH, by our divisibility trick, the product of all of the non-primitive prime divisors is necessarily small:

$$
h\left(\prod_{0 \leqslant j \leqslant\lfloor n / 2\rfloor} f^{j}(\alpha) f^{j}(0)\right)=O\left(d^{n / 2}\right)
$$

whereas $h\left(f^{n-3}(\alpha)\right) \approx d^{n-3} \hat{h}_{f}(\alpha)$.
Provided $f^{k}(0) \neq 0$ for all k, we thus expect that for all but finitely many $n, f^{n}(\alpha)$ has a PPD of odd multiplicity.

Remarks:

- Over function fields, this approach works well for uniform PPD results.
- For non-uniform results, can use $a b c$ to show that one has PPDs of multiplicity 1 for all but finitely many n.
- Odd multiplicity PPDs are crucial in large image results for arboreal reps.

Canonical heights on Jacobians and points on higher-genus curves

Another connection to dynamics is seen in effective versions of the Bogomolov conjecture.

Theorem (Zhang, '93)

Let X / K be a nice curve of genus $g \geqslant 2$, and $j: X \hookrightarrow J:=\operatorname{Jac}(X)$ an Abel-Jacobi embedding. Let ω_{a} be the admissible dualizing sheaf on X. Then

$$
\liminf _{P \in X(\bar{K})} h_{\mathrm{NT}}(j(P)) \geqslant \frac{\omega_{a}^{2}}{4(g-1)}
$$

Hence $\omega_{a}^{2}>0$ implies the Bogomolov Conjecture.
Remark: ω_{a} is a more natural analogue of the Arakelov dualizing sheaf.

Canonical heights on Jacobians and points on higher-genus curves

If $K / k(t)$ is a one-dimensional char. 0 function field, then ω_{a}^{2} is known to be commensurate to the total "badness" of the reduction of X.

If δ_{v} is the v-adic delta-invariant of X for each $v \in M_{K}$, then there are positive constants $C_{1}, C_{2}, C_{3}, C_{4}$ depending only on $g(X)$ and $[K: k(t)]$ such that

$$
C_{1} \sum_{v \in M_{K}} n_{v} \delta_{v} \leqslant \omega_{a}^{2} \leqslant C_{2} \sum_{v \in M_{K}} n_{v} \delta_{v}+C_{3} \cdot \operatorname{genus}(K)+C_{4} .
$$

Number field case: both inequalities are open! In fact:

Theorem (Moret-Bailly, '90)

The right-hand inequality in (\star) implies the Height Uniformity Conjecture.

Canonical heights on Jacobians and points on higher-genus

curves

Remark: Moret-Bailly also shows that the Height Uniformity Conjecture implies a weak form of abc, namely that (for each K) the abc conjecture is true for all sufficiently large ϵ.
Over \mathbb{Q}, the abc conjecture says:

Conjecture (abc)

Let $\epsilon>0$. There is a C_{ϵ} such that for any positive coprime integers a, b, c satisfying $a+b=c$,

$$
c \leqslant C_{\epsilon}\left(\prod_{\text {primes } p \mid a b c} p\right)^{1+\epsilon}
$$

Many results conditioned on $a b c$ in fact only use its truth for all sufficiently large ϵ.

Further questions

(1) Other applications of A-G function average lower bound?
(2) Unconditional (with or w/o uniformity, with or w/o multiplicities) PPD results over number fields? Aside from examples like:

- $z^{d}+c \in \mathbb{Q}[z]$ with $\alpha=0$ (Krieger, '13)
- Polys over \mathbb{Q} fixing 0 (Ingram-Silverman, '09)?
(3) Upper bound in Conjecture (\star) for Galois covers of \mathbb{P}^{1} ? Namely

$$
\omega_{a}^{2} \leqslant C_{2} \sum_{v \in M_{K}} n_{v} \delta_{v}+C_{3} \cdot \operatorname{genus}(K)+C_{4}
$$

Thank you!

