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Notation

K is a number field unless otherwise specified

f : PN
K̄
Ñ PN

K̄
is a morphism of degree d ě 2 (N “ 1 case will be focus)

f n :“ f ˝ f ¨ ¨ ¨ ˝ f
looooomooooon

n times

Let Preperpf ,K q “ tP P PNpK q preperiodic under fu.

A preperiodic point P P PNpK̄ q is one such that

|tf i pPqu8i“0| ă 8.



Forward Orbits

A preperiodic point P P PNpK̄ q is one such that

|tf i pPqu8i“0| ă 8.

The canonical height of P P PNpK q is

ĥf pPq “ lim
nÑ8

1

dn
hpf npPqq.

ĥf pPq “ 0 ðñ P is preperiodic under f

Forward Orbits

We’ll focus on two kinds of instances of K -rationality:

1 K -rationality of points of small canonical height (especially
preperiodic points)

2 K -rational points on higher genus curves and their connection to
forward orbits



Uniform Boundedness Principles

Let K be any field, and let F be a family of morphisms f : PN
K̄
Ñ PN

K̄
.

We say that F satisfies the Uniform Boundedness Principle (UBP)
over K if there is an A “ ApF ,K q such that for any f P FpK q,

|Preperpf ,K q| ď A.

We say that F satisfies the Strong Uniform Boundedness
Principle (SUBP) over K if for every D ě 1 there is a B “ BpF ,Dq
such that for any extension L{K of degree ď D and any f P FpLq,

|Preperpf , Lq| ď B.

Examples

Mazur–Kamienny–Merel: Lattès maps over Q̄ (degree ą 1 maps on
P1
Q̄ descended from endomorphisms on elliptic curves over Q̄) satisfy

the SUBP over Q

Doyle–Poonen (2020): For k a field, K “ kptq, and d ě 2 with
charpkq - d ,

F “ tzd ` c : c P K̄zk̄u

satisfies the SUBP over K .



Another example

Taking a trivial family F “ tf u addresses Northcott and Bogomolov-style
results.

Dvornicich–Zannier (2007): If K is a number field, and f P K rzs is
any polynomial of degree d ě 2 not conjugate to ˘zd or Tdp˘zq,
where Td is the dth Chebyshev polynomial, then f has only finitely
many preperiodic points in K cyc, the maximal cyclotomic extension of
K .

In other words, F “ tf u satisfies the UBP over K cyc.

Uniform Boundedness Conjecture

Uniform Boundedness Conjecture (Morton–Silverman, 1994)

Let N ě 1, let d ě 2, and let K be a number field. Let f : PN
K Ñ PN

K be a
degree d morphism defined over K . There is a B “ BpN, d , rK : Qsq such
that |Preperpf ,K q| ď B.

Uniform Boundedness Conjecture restated

Let K ,N, d be as above. The family F of degree d morphisms PN
K̄
Ñ PN

K̄
satisfies the SUBP over Q.



Example Uniform Boundedness Results

Theorem 1 (L., 2021)

Assume the abcd-conjecture. Let:

K be a number field

d ě 2

F be the set of degree d polynomials defined over K

Then F satisfies the UBP over K .

(A char. 0 function field analogue holds too.)

Abcd is a generalization of the abc-conjecture.

Two-Step Summary of Proof of Theorem 1

Step 1: Use the geometry of preperiodic points in the v -adic filled Julia
sets to deduce arithmetic information about typical pairwise differences
of preperiodic points.

Step 2: Use arithmetic info about pairwise differences to derive a
contradiction of abc or abcd if too many of these differences lie in K .



Example Uniform Boundedness Results

Theorem 2 (L., 2021)

Let F “ tf u, where f P K rxs is a polynomial with a periodic critical point
‰ 8 and at least one place of bad reduction.˚ Then F satisfies the UBP
over K ab.

˚ bad reduction here means not potentially good reduction

abc and uniform boundedness

A useful prototype to start with is an analogue in the Diophantine setting.

Theorem (Hindry–Silverman, 1988)

Assume the abc-conjecture. (An unconditional analogue holds over
one-dimensional function fields of char. 0.)

Let:

E{K be an elliptic curve with j-invariant jE
xhE pPq be the Néron-Tate height of a K -rational point P P E pK q.

Then there are explicit constants c “ cpK q ą 0 and N “ NpK q,
independent of E , such that there are at most N points P P E pK q
satisfying

xhE pPq ď c maxthpjE q, 1u.



Outline of Hindry–Silverman

1 abc matters through the use of Szpiro’s conjecture: given ε ą 0,
there is a constant c “ cpK , εq such that

logNK{QDE{K ď p6` εq logNK{QFE{K ` c ,

where DE{K is the minimal discriminant and FE{K is the conductor
of E{K .

In other words, the valuations of DE{K should not be too large on
average.

Outline of Hindry–Silverman

2 For non-archimedean places v , there are two cases:

|jE |v ď 1 (i.e., potential good reduction at v)
|jE |v ą 1. Tate uniformization gives maps

E pKv q Kˆ
v {q

Z R{plog |jE |vZq

u log |u|v

„

where q P Kv with |q|v “ |1{jE |v ă 1.



Outline of Hindry–Silverman

Two cases:

|jE |v ď 1 (i.e., potential good reduction at v)

|jE |v ą 1. Assuming for simplicity that E has ss reduction, Tate
uniformization gives maps

E pKv q Kˆv {q
Z R{plog |jE |vZq

u log |u|v

„

where q P Kv with |q|v “ |1{jE |v ă 1.

‹ If P,Q P E pK q map to distinct places on the circle, then their
positions completely determine λv pP ´ Qq.

Outline of Hindry–Silverman

Within this bad reduction situation, two cases:
1 vpqq “ vp1{jE q ď 6
2 Otherwise.

Case (1) tells us that points P P E pK q can only map to a restricted part of
the circle:

whereas (2) imposes no restriction on the position of the points.



Outline of Hindry–Silverman

Upshot: If P1, . . . ,PN P E pK q are pairwise distinct and any significant
“proportion” of bad places falls into Case (1), then replace with
Q1 “ r60sP1, . . . ,QN “ r60sPN

If N " 1 and there are N 1 distinct Qi ,

1

N 1pN 1 ´ 1q

ÿ

vPM0
K

ÿ

Qi‰Qj

λv pQi ´ Qjq ě C
ÿ

vPM0
K

log` |jE |v

for some explicit C ą 0 independent of E .

Outline of Hindry–Silverman

If N " 1 and there are N 1 distinct Qi ,

1

N 1pN 1 ´ 1q

ÿ

vPM0
K

ÿ

Qi‰Qj

λv pQi ´ Qjq ě C
ÿ

vPM0
K

log` |jE |v

for some explicit C ą 0 independent of E .

On the other hand, if nearly all bad places fall into Case (2), then Szpiro’s
Conjecture is violated.

A separate combinatorial argument handles the archimedean places.



Uniform Boundedness in higher dimensions

One might ask whether Hindry–Silverman’s approach can be ported to
families of higher-dimensional abelian or Jacobian varieties.

Skeleton:

Szpiro’s conjecture analogue: there are analogous upper bounds on
the average number of components of the Néron model at places of
bad reduction, which follow from abc

Uniform Boundedness in higher dimensions

Problem: normalized local heights don’t sum to the global canonical
height. Instead,

ĥΘpPq “
ÿ

vPMK

λv ,ΘpPq ` κ

for some κ.

Thus any higher-dimensional analogue of

1

N 1pN 1 ´ 1q

ÿ

vPM0
K

ÿ

Qi‰Qj

λv pQi ´ Qjq ě C
ÿ

vPM0
K

log` |jE |v

is not useful unless we can also prove this lower bound for
1

N 1pN 1´1q

ř

vPM0
K

ř

Qi‰Qj
λv pQi ´ Qjq ` κ.



Uniform Boundedness in higher dimensions

Solution: Replace Avgλv pPi ´ Pjq with a generalized Vandermonde matrix
evaluated at a certain basis tηju of global sections of Ln for L very ample:

Vm,v pP1, . . . ,Pmq “ ´
1

n
log

ˇ

ˇ

ˇ
Det

´

ηjp rPi q

¯ˇ

ˇ

ˇ

v
`
ÿ

i

Ĥv p rPi q,

where m “ h0pLnq and Ĥv is a homogeneous escape-rate function.

Theorem (L., ’24)

The functions Vm,v satisfy an Elkies-type bound: There exists a C such
that for all n ě 2, all v and all P1, . . . ,Pm on the abelian variety,

1

m
Vm,v pP1, . . . ,Pmq ě

´C log n

n
.

Uniform Boundedness in higher dimensions

Theorem (L., ’24)

The functions Vm,v satisfy an Elkies-type bound: There exists a C such
that for all n ě 2, all v and all P1, . . . ,Pm on the abelian variety,

1

m
Vm,v pP1, . . . ,Pmq ě

´C log n

n
.

Remarks:

This result holds for general polarized dynamical systems.

A Lehmer-style result on points of small canonical height on abelian
varieties follows, over product formula fields having perfect residue
fields. The bound has the form

ĥLpPq ě
C 1

rK pPq : K s2dimpAq`3`ε
.



K -rationality in the arithmetic of infinite forward orbits

In the function field setting, the following strengthening of Mordell is
well-known.

Theorem (Height Uniformity)

Let X be a nice algebraic curve of genus ě 2 over a one-dimensional,
characteristic 0 function field K , and let D ě 1. There are constants C1

and C2 depending on X , K , a chosen height h, and D such that for all
P P X pLq with rL : K s ď D,

hpPq ď C1 ¨ genuspLq ` C2.

The constants C1 and C2 can be given very explicitly in the case of
hyperelliptic curves y2 “ f pxq.

K -rationality in the arithmetic of infinite forward orbits

Number field analogue:

Conjecture (Height Uniformity/Discriminant Conjecture)

Let X be an algebraic curve of genus ě 2 over a number field K , and let
D ě 1. There are constants C1 and C2 depending on X , K , a chosen
height h, and D such that for all P P X pLq with rL : K s ď D,

hpPq ď C1 ¨ log |∆L| ` C2.

The Height Uniformity Conjecture has deep connections to the arithmetic
of forward orbits.

A couple of examples:

1 Primitive prime divisors, and hence arboreal representations

2 Liminfs of the Néron–Tate height on curves embedded into their
Jacobians (i.e., quantitative Bogomolov)



Primitive prime divisors

We restrict our discussion to polynomial maps f : P1 Ñ P1.

Definition

We say that a prime p of K is a primitive prime divisor of f npαq if:

vppf
npαqq ą 0, and

vppf
mpαqq ď 0 for all f mpαq ‰ 0 with m ă n.

Example: f pxq “ x2 ´ 7{4, α “ 0

0 ÞÑ ´7{4 ÞÑ 21{16 ÞÑ ´7{256 ÞÑ ´114639{65536

Here, f 3p0q fails to have a primitive prime divisor.

PPDs: specified multiplicities

Leveling up, we might ask for specific multiplicities in the prime divisors.

Example: the Sylvester sequence is given by the forward orbit of 2 under
f pxq “ x2 ´ x ` 1:

2 ÞÑ 3 ÞÑ 7 ÞÑ 43 ÞÑ 1807 “ 13ˆ 139 ¨ ¨ ¨

It appears that each term in the sequence is squarefree, but this is not yet
known to be true.



PPDs: specified multiplicities

A simple trick allows us to connect PPDs to points on higher genus
curves.

Suppose
f npαq “ 0 mod p,

and that
f kpαq “ 0 mod p

for some 0 ď k ď n ´ 1. As f npαq “ f n´kpf kpαqq, this is saying that

f n´kp0q “ 0 mod p.

Thus, for any non-primitive prime divisor p of f npαq, either

p | f jp0q for some 0 ď j ď tn{2u

or
p | f jpαq for some 0 ď j ď tn{2u.

PPDs: specified multiplicities

Assume for simplicity that f 3pX q is separable, and that OK is a PID.

For α having infinite forward orbit under f , and n ě 4, write

dny
2
n “ f npαq

with dn squarefree.

We have
dny

2
n “ f 3pf n´3pαqq,

so pf n´3pαq,
?
dnynq is a quadratic point on the higher genus curve

Y 2 “ f 3pX q.

The Height Uniformity Conjecture says that for L “ K p
?
dnq,

genuspLq ě
1

C1

`

hpf n´3pαqq ´ C2

˘

.



PPDs: specified multiplicities

We have
dny

2
n “ f 3pf n´3pαqq,

so pf n´3pαq,
?
dnynq is a quadratic point on the higher genus curve

Y 2 “ f 3pX q.

The Height Uniformity Conjecture says that for L “ K p
?
dnq,

genuspLq ě
1

C1

`

hpf n´3pαqq ´ C2

˘

.

In other words,
hpdnq " hpf n´3pαqq.

Primitive prime divisors: specified multiplicities

OTOH, by our divisibility trick, the product of all of the non-primitive
prime divisors is necessarily small:

h

¨

˝

ź

0ďjďtn{2u

f jpαqf jp0q

˛

‚“ Opdn{2q

whereas hpf n´3pαqq « dn´3ĥf pαq.

Provided f kp0q ‰ 0 for all k , we thus expect that for all but finitely many
n, f npαq has a PPD of odd multiplicity.

Remarks:

Over function fields, this approach works well for uniform PPD results.

For non-uniform results, can use abc to show that one has PPDs of
multiplicity 1 for all but finitely many n.

Odd multiplicity PPDs are crucial in large image results for arboreal
reps.



Canonical heights on Jacobians and points on higher-genus
curves

Another connection to dynamics is seen in effective versions of the
Bogomolov conjecture.

Theorem (Zhang,’93)

Let X {K be a nice curve of genus g ě 2, and j : X ãÑ J :“ JacpX q an
Abel-Jacobi embedding. Let ωa be the admissible dualizing sheaf on X .
Then

lim inf
PPX pKq

hNTpjpPqq ě
ω2
a

4pg ´ 1q
.

Hence ω2
a ą 0 implies the Bogomolov Conjecture.

Remark: ωa is a more natural analogue of the Arakelov dualizing sheaf.

Canonical heights on Jacobians and points on higher-genus
curves

If K{kptq is a one-dimensional char. 0 function field, then ω2
a is known to

be commensurate to the total “badness” of the reduction of X .

If δv is the v -adic delta-invariant of X for each v P MK , then there are
positive constants C1,C2,C3,C4 depending only on gpX q and rK : kptqs
such that

C1

ÿ

vPMK

nvδv ď ω2
a ď C2

ÿ

vPMK

nvδv ` C3 ¨ genuspK q ` C4. (‹)

Number field case: both inequalities are open! In fact:

Theorem (Moret-Bailly, ’90)

The right-hand inequality in (‹) implies the Height Uniformity Conjecture.



Canonical heights on Jacobians and points on higher-genus
curves

Remark: Moret-Bailly also shows that the Height Uniformity Conjecture
implies a weak form of abc, namely that (for each K ) the abc conjecture
is true for all sufficiently large ε.

Over Q, the abc conjecture says:

Conjecture (abc)

Let ε ą 0. There is a Cε such that for any positive coprime integers a, b, c
satisfying a` b “ c ,

c ď Cε

¨

˝

ź

primes p|abc

p

˛

‚

1`ε

.

Many results conditioned on abc in fact only use its truth for all
sufficiently large ε.

Further questions

1 Other applications of A-G function average lower bound?
2 Unconditional (with or w/o uniformity, with or w/o multiplicities)

PPD results over number fields? Aside from examples like:

zd ` c P Qrzs with α “ 0 (Krieger, ’13)
Polys over Q fixing 0 (Ingram–Silverman, ’09)?

3 Upper bound in Conjecture (‹) for Galois covers of P1? Namely

ω2
a ď C2

ÿ

vPMK

nvδv ` C3 ¨ genuspK q ` C4



Thank you!


