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K is a number field unless otherwise specified
f IP’% — ]P’% is a morphism of degree d > 2 (N = 1 case will be focus)

fl:=fof---of
—— ——

n times

Let Preper(f, K) = {P € PV(K) preperiodic under f}.
A preperiodic point P € PV(K) is one such that
{1 (P)}7ol < 0.
£+ p)
P —> f(p)—> fP(p) —>-- —> fU)(p)
FUHED (p)



Forward Orbits

A preperiodic point P € PV(K) is one such that
{F1(P)}72o| < 0.
f(j+1)@)

P —> () —> fO )~ —> [ )
F )

The canonical height of P € PNV(K) is

he(P) = lim inh(f"(P)).

n—o0

~n

hs(P) = 0 <= P is preperiodic under f
I
Forward Orbits

We'll focus on two kinds of instances of K-rationality:
@ K-rationality of points of small canonical height (especially
preperiodic points)
© K-rational points on higher genus curves and their connection to
forward orbits



Uniform Boundedness Principles

Let K be any field, and let F be a family of morphisms f : IP’% — P%.

e We say that F satisfies the Uniform Boundedness Principle (UBP)
over K if there is an A = A(F, K) such that for any f € F(K),

|Preper(f, K)| < A.

@ We say that F satisfies the Strong Uniform Boundedness
Principle (SUBP) over K if for every D > 1 there isa B = B(F, D)
such that for any extension L/K of degree < D and any f € F(L),

|Preper(f,L)| < B.

|

@ Mazur—Kamienny—Merel: Lattés maps over Q (degree > 1 maps on
PL descended from endomorphisms on elliptic curves over Q) satisfy
the SUBP over Q

@ Doyle—Poonen (2020): For k a field, K = k(t), and d = 2 with
char(k) 1 d, o
F={z94c:ce RK\k}

satisfies the SUBP over K.



Another example

Taking a trivial family F = {f} addresses Northcott and Bogomolov-style
results.

@ Dvornicich-Zannier (2007): If K is a number field, and f € K|z] is
any polynomial of degree d > 2 not conjugate to +z¢ or Ty(+2),
where T4 is the dth Chebyshev polynomial, then f has only finitely
many preperiodic points in K¢, the maximal cyclotomic extension of

K.

In other words, F = {f} satisfies the UBP over K¢,

|
Uniform Boundedness Conjecture

Uniform Boundedness Conjecture (Morton—Silverman, 1994)

Let N > 1, let d > 2, and let K be a number field. Let f : PN — PN be a
degree d morphism defined over K. There is a B = B(N, d,[K : Q]) such
that |Preper(f, K)| < B.

Uniform Boundedness Conjecture restated

Let K, N, d be as above. The family F of degree d morphisms IP% — ]P’%
satisfies the SUBP over Q.




Example Uniform Boundedness Results

Theorem 1 (L., 2021)

Assume the abcd-conjecture. Let:
@ K be a number field
ed=>=2

@ F be the set of degree d polynomials defined over K
Then F satisfies the UBP over K.

(A char. 0 function field analogue holds too.)

Abcd is a generalization of the abc-conjecture.

Two-Step Summary of Proof of Theorem 1

Step 1: Use the geometry of preperiodic points in the v-adic filled Julia
sets to deduce arithmetic information about typical pairwise differences
of preperiodic points.

Step 2: Use arithmetic info about pairwise differences to derive a
contradiction of abc or abcd if too many of these differences lie in K.



Example Uniform Boundedness Results

Theorem 2 (L., 2021)

Let F = {f}, where f € K[x] is a polynomial with a periodic critical point
# 00 and at least one place of bad reduction.* Then F satisfies the UBP
over Kb,

* bad reduction here means not potentially good reduction

abc and uniform boundedness

A useful prototype to start with is an analogue in the Diophantine setting.

Theorem (Hindry—Silverman, 1988)

Assume the abc-conjecture. (An unconditional analogue holds over
one-dimensional function fields of char. 0.)

Let:

@ E/K be an elliptic curve with j-invariant jg

° f/ig(P) be the Néron-Tate height of a K-rational point P € E(K).
Then there are explicit constants ¢ = ¢(K) > 0 and N = N(K),
independent of E, such that there are at most N points P € E(K)
satisfying A

he(P) < cmax{h(jg),1}.

v



Outline of Hindry—Silverman

© abc matters through the use of Szpiro's conjecture: given € > 0,
there is a constant ¢ = ¢(K, €) such that

log NK/Q@E/K < (6 + 6) log NK/@LQZE/K + C,

where P i is the minimal discriminant and % is the conductor
of E/K.

In other words, the valuations of Zg, should not be too large on
average.

e
Outline of Hindry=Silverman

@ For non-archimedean places v, there are two cases:

o |je|, <1 (i.e., potential good reduction at v)
o |je|, > 1. Tate uniformization gives maps

E(K,) —— K)/q* — R/(log |je|,Z)

u > log |ul,

where g € K, with |q|, = |1/jg|, < 1.



Outline of Hindry—Silverman

Two cases:
@ |je|, <1 (i.e., potential good reduction at v)
® |je|, > 1. Assuming for simplicity that E has ss reduction, Tate
uniformization gives maps

E(K,) —— K)/q" —— R/(log |je|.Z)

u > log |uly

where g € K, with |q|, = |1/je|, < 1.

0 = log|jel.

* If P, Q € E(K) map to distinct places on the circle, then their
positions completely determine )\, (P — Q).

Outline of Hindry=Silverman

Within this bad reduction situation, two cases:
Q@ v(qg) =v(l/e) <6
@ Otherwise.

Case (1) tells us that points P € E(K) can only map to a restricted part of
the circle:

whereas (2) imposes no restriction on the position of the points.
|



Outline of Hindry—Silverman

Upshot: If P1,..., Py € E(K) are pairwise distinct and any significant
“proportion” of bad places falls into Case (1), then replace with
Q1 = [60]P1, ..., Qn = [60] Py

If N » 1 and there are N/ distinct Q;,

Z DA >C ) log* el

vel\/l Qi#Q; veM0

for some explicit C > 0 independent of E.

Outline of Hindry=Silverman

If N » 1 and there are N/ distinct Q;,

2 PR >C ) log™ el

vel\/l0 Qi#Q; veM0

for some explicit C > 0 independent of E.

On the other hand, if nearly all bad places fall into Case (2), then Szpiro's
Conjecture is violated.

A separate combinatorial argument handles the archimedean places.



Uniform Boundedness in higher dimensions

One might ask whether Hindry-Silverman’s approach can be ported to
families of higher-dimensional abelian or Jacobian varieties.

@ Skeleton:

@ Szpiro's conjecture analogue: there are analogous upper bounds on
the average number of components of the Néron model at places of
bad reduction, which follow from abc

Uniform Boundedness in higher dimensions

Problem: normalized local heights don’'t sum to the global canonical
height. Instead,

he(P)= > Ae(P)+k

VEMK

for some k.

Thus any higher-dimensional analogue of

/\//(/\/%_1) 2 2 MQ—Q)=C ) log” Ll

veM{ Qi#Q; veMy

is not useful unless we can also prove this lower bound for
1
N’ (N'—1) Zvel\/l?( ZQ,-;&QJ- )‘V(Qi - QJ) + K.



Uniform Boundedness in higher dimensions

Solution: Replace Avg\, (P; — P;) with a generalized Vandermonde matrix
evaluated at a certain basis {n;} of global sections of L" for L very ample:

1 ~
Vini(P1, ., Pm) = = log | Det (n;(P)))

where m = h°(L") and H, is a homogeneous escape-rate function.

Theorem (L., '24)

The functions V, , satisfy an Elkies-type bound: There exists a C such
that for all n = 2, all v and all Py, ..., P, on the abelian variety,
1 —Clogn

SV (Pry . P) >
- v(P1 ) .

Uniform Boundedness in higher dimensions

Theorem (L., '24)
The functions Vp, , satisfy an Elkies-type bound: There exists a C such

that for all n = 2, all v and all Py, ..., P, on the abelian variety,
1 —Clogn
Vo (Pr,.. . Pp) > ——2 "
m n

Remarks:
@ This result holds for general polarized dynamical systems.

@ A Lehmer-style result on points of small canonical height on abelian

varieties follows, over product formula fields having perfect residue
fields. The bound has the form

~ C’
he(P) > [K(P) : K|2dim(A)+3+¢’




K-rationality in the arithmetic of infinite forward orbits

In the function field setting, the following strengthening of Mordell is
well-known.

Theorem (Height Uniformity)

Let X be a nice algebraic curve of genus > 2 over a one-dimensional,
characteristic O function field K, and let D > 1. There are constants (C;
and G, depending on X, K, a chosen height h, and D such that for all
P e X(L) with [L: K] < D,

h(P) < Gy - genus(L) + G.

The constants C; and (5 can be given very explicitly in the case of
hyperelliptic curves y? = f(x).

K-rationality in the arithmetic of infinite forward orbits

Number field analogue:

Conjecture (Height Uniformity/Discriminant Conjecture)

Let X be an algebraic curve of genus = 2 over a number field K, and let
D > 1. There are constants C; and C, depending on X, K, a chosen
height h, and D such that for all P € X(L) with [L : K] < D,

h(P) < G -log|AL| + G.

The Height Uniformity Conjecture has deep connections to the arithmetic
of forward orbits.

A couple of examples:
© Primitive prime divisors, and hence arboreal representations

© Liminfs of the Néron—Tate height on curves embedded into their
Jacobians (i.e., quantitative Bogomolov)



Primitive prime divisors

We restrict our discussion to polynomial maps f : P! — P!,

Definition

We say that a prime p of K is a primitive prime divisor of f"(«) if:
® v (f"()) > 0, and
° v, (f(a)) <O for all f™(a) # 0 with m < n.

Example: f(x) =x*>—7/4, a =0
0— —7/4+— 21/16 — —7/256 — —114639/65536

Here, £3(0) fails to have a primitive prime divisor.

PPDs: specified multiplicities

Leveling up, we might ask for specific multiplicities in the prime divisors.

Example: the Sylvester sequence is given by the forward orbit of 2 under
f(x) =x>—x+1:
2+—>3+—7+— 43— 1807 =13 x 139 ..

It appears that each term in the sequence is squarefree, but this is not yet
known to be true.



PPDs: specified multiplicities

A simple trick allows us to connect PPDs to points on higher genus
curves.

Suppose

f"(a) = 0 mod p,
and that

fX(a) = 0 mod p
for some 0 < k < n—1. As f"(a) = f"~K(f¥(a)), this is saying that

f1=5(0) = 0 mod p.
Thus, for any non-primitive prime divisor p of f"(«), either
p | £/(0) for some 0 < j < |n/2|

or
p | fj(a) for some 0 < j < |n/2|.

e
PPDs: specified multiplicities

Assume for simplicity that £3(X) is separable, and that Ok is a PID.

For a having infinite forward orbit under f, and n > 4, write
dnyg = fn(a)

with d, squarefree.

We have
dnyy = F(F"(a)),
so (f"3(a),+/dnyn) is a quadratic point on the higher genus curve
Y2 = £3(X).

The Height Uniformity Conjecture says that for L = K(+/d,),
1

genus(L) > o) (h(F"3(a)) — G) .



PPDs: specified multiplicities

We have
dnyy = £2(F"3(a)),

so (f"3(a),+/dnyn) is a quadratic point on the higher genus curve
Y? = £3(X).
The Height Uniformity Conjecture says that for L = K(+/d,),

genus(L) > Cil (h(F"3(a)) — G) .

In other words,

h(d,) » h(f"3(a)).

Primitive prime divisors: specified multiplicities

OTOH, by our divisibility trick, the product of all of the non-primitive
prime divisors is necessarily small:

hl ] F@f©)]=0(d"?

0<j<|n/2]
whereas h(f"3(a)) ~ d"3h¢(a).

Provided fK(0) # 0 for all k, we thus expect that for all but finitely many
n, f"(«) has a PPD of odd multiplicity.

Remarks:

@ Over function fields, this approach works well for uniform PPD results.

@ For non-uniform results, can use abc to show that one has PPDs of
multiplicity 1 for all but finitely many n.

@ Odd multiplicity PPDs are crucial in large image results for arboreal
reps.



Canonical heights on Jacobians and points on higher-genus

curves

Another connection to dynamics is seen in effective versions of the
Bogomolov conjecture.

Theorem (Zhang,'93)

Let X/K be a nice curve of genus g > 2, and j : X — J := Jac(X) an
Abel-Jacobi embedding. Let w, be the admissible dualizing sheaf on X.

Then
2

Wa

liminf h (P)) > —2—.
At intUP)) > g )

Hence w? > 0 implies the Bogomolov Conjecture.

Remark: w, is a more natural analogue of the Arakelov dualizing sheaf.

Canonical heights on Jacobians and points on higher-genus
curves

If K/k(t) is a one-dimensional char. 0 function field, then w? is known to
be commensurate to the total “badness’ of the reduction of X.

If 6, is the v-adic delta-invariant of X for each v € My, then there are
positive constants Ci, G, C3, C4 depending only on g(X) and [K : k(t)]
such that

G Z n,o, < wg < G Z n,o, + Cs - genus(K) + C;. (%)

VEMK VGMK

Number field case: both inequalities are open! In fact:

Theorem (Moret-Bailly, '90)

The right-hand inequality in (%) implies the Height Uniformity Conjecture.




Canonical heights on Jacobians and points on higher-genus

curves

Remark: Moret-Bailly also shows that the Height Uniformity Conjecture
implies a weak form of abc, namely that (for each K) the abc conjecture
is true for all sufficiently large e.

Over Q, the abc conjecture says:

Conjecture (abc)

Let € > 0. There is a C. such that for any positive coprime integers a, b, ¢
satisfying a + b = c,

1+e

c < C H p

primes p|abc

Many results conditioned on abc in fact only use its truth for all
sufficiently large e.

Further questions

© Other applications of A-G function average lower bound?

@ Unconditional (with or w/o uniformity, with or w/o multiplicities)
PPD results over number fields? Aside from examples like:

o z9 + c € Q[z] with a = 0 (Krieger, '13)
e Polys over Q fixing 0 (Ingram—Silverman, '09)?

© Upper bound in Conjecture () for Galois covers of P1? Namely

w§ < G Z n,0, + Cs - genus(K) + G4

VEMK



Thank you!



