Density of rational points near manifolds

Damaris Schindler

Georg-August-Universität Göttingen

The Mordell conjecture 100 years later 11th July 2024

Counting rational points on projective varieties

Let $n \ge 2$ and $V \subset \mathbb{P}^n_{\mathbb{Q}}$ an irreducible variety of degree d. For a point $x = (x_0 : \ldots : x_n) \in \mathbb{P}^n(\mathbb{Q})$ with $x_0, \ldots, x_n \in \mathbb{Z}$ and $gcd(x_0, \ldots, x_n) = 1$ set

$$H(x) = \max_{0 \le i \le n} |x_i|.$$

Question

Define for $B \in \mathbb{R}_{\geq 0}$ the counting function

$$N_V(B) := \sharp \{ x \in V(\mathbb{Q}) : H(x) \le B \}.$$

What can we say about upper bounds for $N_V(B)$?

Trivial upper bound: $N_V(B) \ll_V B^{\dim V+1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Points of bounded height on projective space

For a point $x = (x_0 : \ldots : x_n) \in \mathbb{P}^n(\mathbb{Q})$ with $x_0, \ldots x_n \in \mathbb{Z}$ and $gcd(x_0, \ldots, x_n) = 1$ set

$$H(x) = \max_{0 \le i \le n} |x_i|.$$

With this we find that

$$\mathcal{N}_{\mathbb{P}^n}(B) = \sharp\{x \in \mathbb{P}^n(\mathbb{Q}) : H(x) \le B\}$$

= $\frac{1}{2}$ $\sharp\{(x_0, \dots, x_n) \in \mathbb{Z}^n, |x_i| \le B, 0 \le i \le n, \ \gcd(x_0, \dots, x_n) = 1\}$

Theorem

For $n \ge 1$ we have

$$N_{\mathbb{P}^n}(B) \sim rac{2^n}{\zeta(n+1)}B^{n+1}$$

Damaris Schindler Density of rational points near manifolds

Dimension growth conjecture

Example

Rational linear subspaces, e.g. $V \subset \mathbb{P}^n_{\mathbb{Q}}$ given by

$$a_0x_0+\ldots+a_nx_n=0,$$

with $a_i \in \mathbb{Z}$, $1 \le i \le n$ and $a_0 \ne 0$. Then

 $N_V(B) \sim B^n$.

Example

Let $a_0,\ldots,a_n\in\mathbb{Z}\setminus\{0\}$ and $V\subset\mathbb{P}^n_\mathbb{Q}$ given by

$$a_0x_0^2+\ldots+a_nx_n^2=0.$$

Then, for $n \ge 4$ we have

 $N_V(B) \sim cB^{n-1}.$

Hypersurfaces of larger degree

Example

Let $a_0, \ldots, a_n \in \mathbb{Z} \setminus \{0\}$ and $V \subset \mathbb{P}^n_{\mathbb{O}}$ given by

$$a_0x_0^d+\ldots+a_nx_n^d=0.$$

By our naive heuristic, we expect

$$N_V(B) \sim cB^{n+1-d}.$$

By the resolution of Vinogradov's mean value theorem due to Bourgain, Demeter and Guth and Wooley, one can prove this asymptotic for $n \gg d^2$.

向下 イヨト イヨト

Hypersurfaces with singularities

Example

Let
$$F_0(\mathbf{x}), F_1(\mathbf{x}) \in \mathbb{Z}[x_0, \dots, x_n]$$
 and $V \subset \mathbb{P}^n_{\mathbb{Q}}, n \ge 2$ given by
 $x_0F_0(\mathbf{x}) - x_1F_1(\mathbf{x}) = 0.$

Then

$$N_V(B) \geq \frac{1}{2} \sharp\{(x_2, \dots, x_n) \in \mathbb{Z}^{n-1} : \max_{1 \leq i \leq n} |x_i| \leq B$$
$$\gcd(x_2, \dots, x_n) = 1\}$$
$$\gg B^{n-1}$$

イロト イヨト イヨト イヨト

臣

Conjecture (Weak Dimension growth conjecture)

Let $V \subset \mathbb{P}^n_{\mathbb{Q}}$ be an irreducible projective variety of degree $\deg(V) \geq 2$. Then

$$N_V(B) \ll_V B^{\dim V + \varepsilon},$$

for any $\varepsilon > 0$.

Remark

- Sharper version with uniformity in V and implicit constants only depending on n, d, ε.
- Solved in a series of articles by Browning, Heath-Brown and Salberger, using the determinant method.

イロト イポト イヨト イヨト

Rational points close to manifolds

Example

The surface S given by the quadratic form $Q(x, y, z) = x^2 - y^2 - \sqrt{2}z^2$.

イロン 人間 とくけい ヘビン

Let $\mathcal{M} \subset \mathbb{R}^n$ be a bounded submanifold with dim $\mathcal{M} = m$.

A counting function

Let Q > 1 and $0 \le \delta < \frac{1}{2}$. We define the counting function

$$\mathsf{N}_\mathcal{M}(Q,\delta):= \sharp \left\{ rac{\mathbf{p}}{q} \in \mathbb{Q}^n : 1 \leq q \leq Q : \mathsf{dist}\left(rac{\mathbf{p}}{q},\mathcal{M}
ight) \leq rac{\delta}{q}
ight\},$$

where $\mathbf{p} \in \mathbb{Z}^n$.

Trivial upper bound

 $N_{\mathcal{M}}(Q,\delta) \ll Q^{m+1}.$

イロン イヨン イヨン イヨン

Э

Example

For \mathcal{M} a piece of a rational linear subspace we have $N_{\mathcal{M}}(Q,\delta)\gg Q^{m+1}.$

Question

Typical expectation for $N_{\mathcal{M}}(Q, \delta)$?

Set R = n - m. A heuristic argument via volume computation:

$$N_{\mathcal{M}}(Q,\delta) \sim \left(rac{\delta}{Q}
ight)^R Q Q^n \sim \delta^R Q^{m+1}.$$

イロン 不同 とうほう 不同 とう

Heuristic

$$N_{\mathcal{M}}(Q,\delta) \sim \delta^R Q^{m+1}$$

For what size of δ is this realistic?

Example

a) Let
$$\mathcal{P}\subset \mathbb{R}^2$$
 be given by $y=x^2$ for $0\leq x\leq 1.$ Then

$$N_{\mathcal{P}}(Q,\delta) \geq N_{\mathcal{P}}(Q,0) \geq \sum_{q \leq \sqrt{Q}} q \gg Q.$$

This suggests $\delta \gg Q^{-1}$ for the 'volume term' to dominate. b) Let $S = S^{n-1} \subset \mathbb{R}^n$, $n \ge 3$ be given by $x_1^2 + \ldots + x_n^2 = 1$. Then

 $N_{\mathcal{S}}(Q,0) \sim c_n Q^{n-1}.$

Conjecture

If \mathcal{M} is a bounded submanifold of \mathbb{R}^n with boundary and proper curvature conditions, then for $\varepsilon > 0$

$$N_{\mathcal{M}}(Q,\delta) \ll \delta^R Q^{m+1} + Q^{m+\varepsilon},$$

for all $0 \le \delta < 1/2$ and $Q \ge 1$. Moreover, if $\delta \ge Q^{-\frac{1}{R}+\varepsilon}$ for some $\varepsilon > 0$, then

$$N_{\mathcal{M}}(Q,\delta) \sim c \delta^R Q^{m+1},$$

for some constant c depending on $\mathcal{M},$ where $Q \to \infty.$

Example (The curvature condition is necessary)

For the Fermat curve \mathcal{F}_d : $x^d + y^d = 1$ one has

$$N_{\mathcal{F}_d}(Q,\delta) \gg \delta^{\frac{1}{d}} Q^{2-\frac{1}{d}}.$$

イロト イボト イヨト イヨト

Theorem (J.-J. Huang 2019)

The main conjecture holds for smooth compact hypersurfaces $S \subset \mathbb{R}^n$ with Gaussian curvature bounded away from 0.

Previous work: Beresnevich, Dickinson, Velani, Huxley, Vaughan, Velani, Zorn...

Corollary (J.-J. Huang 2019)

Analogue of dimension growth conjecture for smooth hypersurfaces with non-vanishing Gaussian curvature.

Question

What happens in higher codimension? Can we relax the curvature condition?

・ロト ・回ト ・ヨト ・ヨト

Let f_1, \ldots, f_R be smooth functions on \mathbb{R}^m and let $\mathcal{M} \subset \mathbb{R}^{m+R}$ be given by

$$\mathcal{M} = \{ (\mathbf{x}, f_1(\mathbf{x}), \dots, f_R(\mathbf{x})) \in \mathbb{R}^{m+R}, \ \mathbf{x} \in B_{\varepsilon}(\mathbf{x}_0) \},$$

where $B_{\varepsilon}(\mathbf{x}_0)$ is a ball of radius ε around $\mathbf{x}_0 \in \mathbb{R}^m$.

Question

If we want to count rational points close to \mathcal{M} , how can we formulate this as a counting problem?

To make things analytically better behaved, we first introduce a smooth weight.

・ 同 ト ・ ヨ ト ・ ヨ ト

Formulating a counting problem

Notation: for $\alpha \in \mathbb{R}$ write $\|\alpha\| = \min_{n \in \mathbb{Z}} |\alpha - n|$. Let $m \ge 2$ and let $w \in C_0^{\infty}(\mathbb{R}^m)$ be a non-negative weight function. For $Q \in \mathbb{N}$ and $\delta \ge 0$, we define

$$\mathcal{N}_{\mathsf{w}}(\mathcal{Q},\delta) = \sum_{\substack{\mathbf{a} \in \mathbb{Z}^m \\ q \leq \mathcal{Q} \\ \|qf_1(\mathbf{a}/q)\| \leq \delta}} w\left(rac{\mathbf{a}}{q}
ight).$$

Remark

Note that we expect
$$\sum_{\mathbf{a}\in\mathbb{Z}^m,q\leq Q} w\left(rac{\mathbf{a}}{q}\right)\sim Q^{m+1}$$
, and $\mathcal{N}_w(Q,\delta)\sim \delta^R Q^{m+1}$.

In the case R = 1, the manifold parametrised by

$$\mathcal{M} = \{ (\mathbf{x}, f_1(\mathbf{x})) \in \mathbb{R}^{m+1}, \ \mathbf{x} \in B_{\varepsilon}(\mathbf{x}_0) \},$$

has non-zero Gaussian curvature in \boldsymbol{x}_0 iff

 $\det H_{f_1}(\mathbf{x}_0) \neq 0,$

where H_{f_1} is the Hessian matrix of f_1 .

Assumption *

Given any $(t_1,\ldots,t_R) \in \mathbb{R}^R \setminus \{\mathbf{0}\}$,

 $\det H_{t_1f_1+\cdots+t_Rf_R}(\mathbf{x}_0)\neq 0$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem (S.-Yamagishi 2022)

Let $m \ge 2$. Assume that Assumption* holds and that the support of w is sufficiently small. Then for any $\varepsilon > 0$

$$\left|\mathcal{N}_{\mathsf{w}}(Q,\delta) - \sigma \delta^{R} Q^{m+1}\right| \ll Q^{m-rac{(m-2)(R-1)}{m+2(R-1)}+arepsilon},$$

where $\sigma > 0$.

Remark

Compare this to the analogue of the dimension growth conjecture which would predict in this situation that

 $N_w(Q,0) \ll Q^{m+\varepsilon}.$

| 同 ト イ ヨ ト イ ヨ ト

What if the curvature vanishes?

Consider a hypersurface of the form

$$\mathcal{M} = \{ (\mathbf{x}, f(\mathbf{x})), \ \mathbf{x} \in B_1(\mathbf{0}) \},\$$

where $f : \mathbb{R}^{n-1} \to \mathbb{R}$ is assumed to be a smooth function outside of **0**, homogeneous of degree *D*, i.e.

$$f(\lambda \mathbf{x}) = \lambda^D f(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^{n-1}, \ \lambda \in \mathbb{R}_{>0}.$$

Theorem (Srivastava, N. Technau 2023)

Assume that $n \ge 3$, $\frac{2n-2}{2n-3} < D < n-1$ and $H_f(\mathbf{x}) \neq 0$, for $\mathbf{x} \neq \mathbf{0}$. Then for $\delta \gg Q^{\varepsilon-1}$, one has

$$N_w(Q,\delta) \asymp \delta Q^n + \left(\frac{\delta}{Q}\right)^{\frac{n-1}{D}} Q^n.$$

Example: take $f(\mathbf{x}) = \|\mathbf{x}\|_2^D$.

Let $\mathcal{M} \subset \mathbb{R}^n$, where $n \geq 2$, be a bounded submanifold of the form

 $\mathcal{M} = \{(\textbf{x},\textbf{F}(\textbf{x})), \textbf{x} \in B_1(\textbf{0})\},$

where $B_1(\mathbf{0})$ is the *m*-dimensional unit ball, and $\mathbf{F}(\mathbf{x}) = (F_1(\mathbf{x}), \dots, F_R(\mathbf{x})).$

Definition

We say that \mathcal{M} as above is *I*-nondegenerate at a point $\mathbf{x}_0 \in B_1(\mathbf{0})$, if the partial derivatives of $(\mathbf{x}, \mathbf{F}(\mathbf{x}))$ of order up to *I* in the point \mathbf{x}_0 span \mathbb{R}^n .

Moreover, we say that the manifold is *I*-nondegenerate, if it is *I*-nondegenerate at almost every point $\mathbf{x}_0 \in B_1(\mathbf{0})$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let $\mathcal{M} \subset \mathbb{R}^n$, where $n \geq 2$, be a bounded submanifold of the form

$$\mathcal{M} = \{(\mathbf{x}, \mathbf{F}(\mathbf{x})), \mathbf{x} \in B_1(\mathbf{0})\},\$$

and let Ω, ω, w be suitable weight functions. Define the counting function

$$N_{\mathsf{F}}(\delta, Q) := \sum_{(q, \mathbf{a}) \in \mathbb{Z}^{m+1}} \Omega\left(\frac{\mathbf{a}}{q}\right) \omega\left(\frac{q}{Q}\right) \prod_{1 \le i \le R} w\left(\frac{\|qF_i(\frac{\mathbf{a}}{q})\|}{\delta}\right),$$

where $||y|| = \min_{k \in \mathbb{Z}} |y - k|$ for $y \in \mathbb{R}$.

I-nondegenerate manifolds

$$\mathcal{M} \subset \mathbb{R}^n$$
, $m = \dim \mathcal{M}$, $R = n - m$.

Theorem (Beresnevich 2012)

Suppose $\mathcal{M} = \{(\mathbf{x}, \mathbf{F}(\mathbf{x})), \mathbf{x} \in B_1(\mathbf{0})\}\$ is *I*-nondegenerate and analytic. For $\delta \gg Q^{-\frac{1}{R}}$ one has

 $N_{\mathbf{F}}(\delta, Q) \gg \delta^R Q^{m+1}.$

Beresnevich and Yang 2023:

Suppose $\mathcal M$ is I-nondegenerate and smooth. Then outside of a 'small' part of $\mathcal M$ one has the upper bound

$$\widetilde{N}_{\mathsf{F}}(\delta, Q) \ll \delta^{R} Q^{m+1}.$$

• Using a quantitative non-divergence estimate by Bernik, Kleinbock and Margulis.

I-nondegenerate manifolds

$$\mathcal{M} \subset \mathbb{R}^n$$
, $m = \dim \mathcal{M}$, $R = n - m$.

Theorem (S., Srivastava and Technau 2023)

Suppose $\mathcal{M} = \{(\mathbf{x}, \mathbf{F}(\mathbf{x})), \mathbf{x} \in B_1(\mathbf{0})\}$ is *I*-nondegenerate and smooth. Then there exists a constant *c* and a constant $\eta > 0$ such that for

$$\delta \gg Q^{-rac{1}{2Rml(n+1)}},$$

we have

$$N_{\mathsf{F}}(\delta, Q) = c \delta^R Q^{m+1} + O\left(\delta^R Q^{m+1-\eta}\right)$$

Remark

We obtain lower bounds of the expected order of magnitude for $\delta \gg Q^{-\frac{3}{2n-1}+\epsilon}.$

イロト イヨト イヨト イヨト

Theorem (S., Srivastava and Technau 2023)

Suppose $\mathcal{M} = \{(\mathbf{x}, \mathbf{F}(\mathbf{x})), \mathbf{x} \in B_1(\mathbf{0})\}\$ is *I*-nondegenerate and smooth. Then for $0 \le \delta \le 1/2$ we have

$$N_{\mathsf{F}}(Q,\delta) \ll \delta^{R} Q^{m+1} + Q^{m+1-\frac{2R}{2mR(2l-1)(n+1)+2n-1}},$$

and in particular

$$N_{\mathsf{F}}(Q,0) \ll Q^{m+1-rac{1}{2lR(n+1)}}.$$

Application: upper bounds for the number of rational points of bounded height on projective varieties, if the corresponding manifold is *I*-nondegenerate.

(人間) (人) (人) (人) (人)

Our approach via Fourier analysis

By Poisson summation we find that

$$N_{\mathsf{F}}(Q,\delta) - c\delta^R Q^{m+1} pprox \delta^R Q^{m+1} \sum_{\substack{(\mathbf{v},c) \in \mathbb{Z}^{n+1} \\ \|\mathbf{v}\|_{\infty}, |c| \sim \delta^{-1}}} I(\mathbf{v},c)$$

with

$$I(\mathbf{v},c) = \int_{\mathbb{R}^{m+1}} y^R e^{2\pi i y Q[\langle (\mathbf{x},\mathbf{F}(\mathbf{x})),\mathbf{v}\rangle - c]} \Omega(\mathbf{x}) \omega(y) d\mathbf{x} dy.$$

Proof ingredients:

- Construction of a weight function which separates 'generic parts' and 'special parts'
- For the special parts: use a quantitative non-divergence estimate due to Bernik, Kleinbock and Margulis.
- for the generic parts: rapid decay estimates

Theorem (Dirichlet)

Let $\theta \in \mathbb{R}$ and $Q \in \mathbb{N}$. Then there are integers a, q with $1 \leq q \leq Q$ and gcd(a,q) = 1 such that

$$\left| heta - rac{a}{q}
ight| < rac{1}{qQ}.$$

Corollary

Let $\theta \in \mathbb{R}$. Then there are infinitely many tuples $(a, q) \in \mathbb{Z} \times \mathbb{N}$ such that

$$\left| heta\,-\,rac{\mathsf{a}}{q}
ight|\,<\,rac{1}{q^2}\,.$$

Multi-dimensional version: Let $\theta_1, \ldots, \theta_n \in \mathbb{R}$. Then there are infinitely many tuples $(\mathbf{a}, q) \in \mathbb{Z}^n \times \mathbb{N}$ such that

$$\left|\theta_i-\frac{a_i}{q}\right|< q^{-1-\frac{1}{n}},\quad 1\leq i\leq n.$$

イロト イヨト イヨト イヨト

Definition

Given a function $\psi : (0, +\infty) \to (0, 1)$, we say that a point $\mathbf{y} \in \mathbb{R}^n$ is ψ -approximable if the condition

$$\left\|\mathbf{y} - \frac{\mathbf{a}}{q}\right\|_{\infty} < \frac{\psi(q)}{q}$$
 (0.1)

イロト イヨト イヨト イヨト

holds for infinitely many $(\mathbf{a}, q) \in \mathbb{Z}^n \times \mathbb{N}$. Write $S_n(\psi)$ for the set of ψ -approximable points in \mathbb{R}^n .

Example

By Dirichlet's theorem we have
$$\mathcal{S}_n(q^{-\frac{1}{n}})=\mathbb{R}^n.$$

Applications to Diophantine approximation

Notation: We write μ_n for the *n*-dimensional Lebesgue measure on \mathbb{R}^n .

Theorem (Khintchine's theorem)

Let $\psi : (0, +\infty) \to (0, 1)$ be a monotonic approximation function. • If $\sum_{q=1}^{\infty} \psi(q)^n < \infty$, then

$$\mu_n(\mathcal{S}_n(\psi))=0.$$

 If ∑_{q=1}[∞] ψ(q)ⁿ = ∞, then the complement of S_n(ψ) has Lebesgue measure zero.

Example

We recover that the complement of $S_n(q^{-\frac{1}{n}})$ in \mathbb{R}^n has Lebesgue measure zero.

・ 同 ト ・ ヨ ト ・ ヨ ト

Convergence case: Assume that

$$\sum_{q=1}^{\infty}\psi(q)^n<\infty$$

and consider $\mathcal{S}_n(\psi) \cap [0,1]^n$. For $q \in \mathbb{N}$ consider the set

$$E_q(\psi) = igcup_{0\leq \mathbf{a}\leq q} \prod_{i=1}^n \left(rac{a_i}{q} - rac{\psi(q)}{q}, rac{a_i}{q} + rac{\psi(q)}{q}
ight).$$

Note that

$$\mu_n(E_q(\psi)) \ll \psi(q)^n.$$

Now apply the convergence case of the Borel-Cantelli lemma.

• • = • • = •

Question (Sprindzuk, Kleinbock, Lindenstrauss, Margulis, Weiss)

Let $\mathcal{M} \subset \mathbb{R}^n$ be a nondegenerate submanifold and $\psi: (0, +\infty) \to (0, 1)$ a monotonic approximation function. Assume that

converges/diverges. Can one show that almost no/almost all points of \mathcal{M} are ψ -approximable?

Theorem (Beresnevich, Yang 2023)

If $\sum_{q=1}^{\infty} \psi(q)^n < \infty$, then almost all points on \mathcal{M} are not ψ -approximable.

・ロト ・回ト ・ヨト ・ヨト

For a Lebesgue measurable set $A \subset \mathbb{R}^n$ we write dim(A) and $\mathcal{H}^s(A)$ for the Hausdorff dimension and the *s*-dimensional Hausdorff measure.

Theorem (The Jarník-Besicovitch theorem)

Let $\tau \ge 1/n$. Then dim $S_n(q^{-\tau}) = \frac{n+1}{\tau+1}$.

Theorem (Jarník's theorem)

Given any monotonic function ψ and 0 < s < n, we have

$$\mathcal{H}^{s}(\mathcal{S}_{n}(\psi)) = \begin{cases} 0 & \text{if } \sum_{q=1}^{\infty} q^{n} \left(\frac{\psi(q)}{q}\right)^{s} < \infty ,\\ \\ \infty & \text{if } \sum_{q=1}^{\infty} q^{n} \left(\frac{\psi(q)}{q}\right)^{s} = \infty . \end{cases}$$

(1) マント (1) マント

Question

Find the Hausdorff dimension s of the set $S_n(\psi) \cap \mathcal{M}$ for a smooth submanifold $\mathcal{M} \subset \mathbb{R}^n$.

Question (Dimension Problem)

Let $1 \leq m < n$ be integers and $\widetilde{\mathcal{M}}_{n,m}$ be the class of submanifolds $\mathcal{M} \subset \mathbb{R}^n$ of dimension m which are nondegenerate at every point. Find the maximal value $\tau_{n,m}$ such that

 $\dim {\mathcal S}_n(q^{-\tau}) \cap {\mathcal M} = \frac{n+1}{\tau+1} - \ {\it codim} \ {\mathcal M} \quad \ \ {\it whenever} \ 1/n \leqslant \tau < \tau_{n,m}$

for every manifold $\mathcal{M} \in \widetilde{\mathcal{M}}_{n,m}$.

Question (Dimension Problem)

Let $1 \leq m < n$ be integers and $\widetilde{\mathcal{M}}_{n,m}$ be the class of submanifolds $\mathcal{M} \subset \mathbb{R}^n$ of dimension m which are nondegenerate at every point. Find the maximal value $\tau_{n,m}$ such that

 $\dim {\mathcal S}_n(q^{-\tau}) \cap {\mathcal M} = \frac{n+1}{\tau+1} - \ {\it codim} \ {\mathcal M} \quad \ whenever \ 1/n \leqslant \tau < \tau_{n,m}$

for every manifold $\mathcal{M} \in \widetilde{\mathcal{M}}_{n,m}$.

Conjecture (Beresnevich, Yang 2023)

Let 1 < m < n. Then $\tau_{n,m} = \frac{1}{n-m}$.

Generalisations to Hausdorff measure - new results

Corollary (S., Srivastava and Technau 2023)

Let $n \ge 2$ be an integer, $\tau \in [\frac{1}{n}, 1)$ be a real number, and \mathcal{M} be a smooth *l*-nondegenerate submanifold of \mathbb{R}^n of dimension *m*. Suppose that τ satisfies

$$\tau < \frac{3\alpha+1}{(2n-1)\alpha+n},$$

where $\alpha := \frac{1}{R(2l-1)(n+1)}$. Then

$$\dim(\mathcal{M}\cap\mathcal{S}_n(q^{-\tau}))=\frac{n+1}{\tau+1}-\operatorname{codim}\mathcal{M}.$$

Remark: Beresnevich and Yang 2023 obtain the same result under the condition

$$\frac{n\tau-1}{\tau+1} \leq \frac{\alpha(3-2n\tau)}{2\tau+1}.$$

Thank you for listening!

・ロト ・回ト ・ヨト ・ヨト

Ð,