Formalizing Mordell ?

Michael Stoll
Universität Bayreuth

The Mordell conjecture $2 \cdot 3 \cdot 17$ years later
MIT
July 12, 2024

Prologue: a Challenge

Prologue: a Challenge

Challenge:

Given $C>0$, find (or prove the existence of)
a nice curve X / \mathbb{Q} of genus $g \geq 2$ such that $\# X(\mathbb{Q}) \geq C \cdot g$!

Prologue: a Challenge

Challenge:

Given $C>0$, find (or prove the existence of)
a nice curve X / \mathbb{Q} of genus $g \geq 2$ such that $\# X(\mathbb{Q}) \geq C \cdot g$!

- $C=321$

$$
\text { (} \mathrm{g}=2 ; \text { St., Elkies) }
$$

Prologue: a Challenge

Challenge:

Given $C>0$, find (or prove the existence of)
a nice curve X / \mathbb{Q} of genus $g \geq 2$ such that $\# X(\mathbb{Q}) \geq C \cdot g$!

- $C=321$
($g=2$; St., Elkies)
- $\mathrm{C}=8$
($g \rightarrow \infty$, hyperelliptic; Mestre(?))

Prologue: a Challenge

Challenge:

Given $C>0$, find (or prove the existence of)
a nice curve X / \mathbb{Q} of genus $g \geq 2$ such that $\# X(\mathbb{Q}) \geq C \cdot g$!

- $\mathrm{C}=321$
($g=2$; St., Elkies)
- $\mathrm{C}=8$
($g \rightarrow \infty$, hyperelliptic; Mestre(?))
- $\# X(\mathbb{Q}) \leq(8 r+33) g \quad$ (hyperelliptic, $r=r k J(\mathbb{Q}) \leq g-3$; St.)

Prologue: a Challenge

Challenge:

Given $C>0$, find (or prove the existence of)
a nice curve X / \mathbb{Q} of genus $g \geq 2$ such that $\# X(\mathbb{Q}) \geq C \cdot g$!

- $\mathrm{C}=321$
($\mathrm{g}=2$; St., Elkies)
- $\mathrm{C}=8$
($g \rightarrow \infty$, hyperelliptic; Mestre(?))
- $\# X(\mathbb{Q}) \leq(8 r+33) g \quad$ (hyperelliptic, $r=r k J(\mathbb{Q}) \leq g-3$; St.)
- Unlikely intersection heuristic:
$\# X(\mathbb{Q}) \ll g+r$

Prologue: a Challenge

Challenge:

Given $C>0$, find (or prove the existence of)
a nice curve X / \mathbb{Q} of genus $g \geq 2$ such that $\# X(\mathbb{Q}) \geq C \cdot g$!

- $C=321$
($\mathrm{g}=2$; St., Elkies)
- $\mathrm{C}=8$
($g \rightarrow \infty$, hyperelliptic; Mestre(?))
- $\# X(\mathbb{Q}) \leq(8 r+33) g \quad$ (hyperelliptic, $r=r k J(\mathbb{Q}) \leq g-3$; St.)
- Unlikely intersection heuristic: $\quad \# X(\mathbb{Q}) \ll g+r$

Challenge':
Beat $C=8$ for $g \rightarrow \infty$!

Proof Assistants

Proof Assistants

A proof assistant or interactive theorem prover (ITP) is a piece of computer software that

Proof Assistants

A proof assistant or interactive theorem prover (ITP) is a piece of computer software that
(1) allows to construct a proof in a formal language

Proof Assistants

A proof assistant or interactive theorem prover (ITP) is a piece of computer software that
(1) allows to construct a proof in a formal language
(2) and checks it for correctness.

Proof Assistants

A proof assistant or interactive theorem prover (ITP) is a piece of computer software that
(1) allows to construct a proof in a formal language
(2) and checks it for correctness.

There are various such systems around (list not exhaustive):

- Isabelle (1986)
- Coq/Rocq (1989)
- Agda (1999; 2007: Agda 2)
- Lean (2013; 2021: Lean 4)

Proof Assistants

A proof assistant or interactive theorem prover (ITP) is a piece of computer software that
(1) allows to construct a proof in a formal language
(2) and checks it for correctness.

There are various such systems around (list not exhaustive):

- Isabelle (1986)
- Coq/Rocq (1989)
- Agda (1999; 2007: Agda 2)
- Lean (2013; 2021: Lean 4)

Lean has a large cohesive and actively developed library Mathlib that contains definitions, statements and proofs comprising most ungergraduate and quite some higher-level mathematics.

What are they good for?

What are they good for?

There are various (potential) benefits.

What are they good for?

There are various (potential) benefits.

- Establish correctness of difficult proofs

What are they good for?

There are various (potential) benefits.

- Establish correctness of difficult proofs
* Four Color Theorem (Gonthier+, 2005, Coq)
* Kepler Conjecture (Hales+, 2014, Isabelle/HOL Light)
\star A result on liquid vector spaces (Commelin ${ }^{+}$, 2022, Lean)

What are they good for?

There are various (potential) benefits.

- Establish correctness of difficult proofs
* Four Color Theorem (Gonthier ${ }^{+}$, 2005, Coq)
* Kepler Conjecture (Hales+, 2014, Isabelle/HOL Light)
\star A result on liquid vector spaces (Commelin ${ }^{+}$, 2022, Lean)
- Establish a unified database of mathematical definitions and results

What are they good for?

There are various (potential) benefits.

- Establish correctness of difficult proofs
* Four Color Theorem (Gonthier+, 2005, Coq)
* Kepler Conjecture (Hales+, 2014, Isabelle/HOL Light)
\star A result on liquid vector spaces (Commelin ${ }^{+}$, 2022, Lean)
- Establish a unified database of mathematical definitions and results
- Enable large-scale collaboration on mathematical projects without the need of establishing trust beforehand or checking each other's work

What are they good for?

There are various (potential) benefits.

- Establish correctness of difficult proofs
* Four Color Theorem (Gonthier+, 2005, Coq)
* Kepler Conjecture (Hales+, 2014, Isabelle/HOL Light)
\star A result on liquid vector spaces (Commelin ${ }^{+}$, 2022, Lean)
- Establish a unified database of mathematical definitions and results
- Enable large-scale collaboration on mathematical projects without the need of establishing trust beforehand or checking each other's work
\star Polynomial Freiman-Ruzsa Conjecture over $\mathbb{F}_{2}\left(\right.$ Tao $^{+}, 2023$, Lean)
* Reduce FLT to 1980s mathematics (Buzzard ${ }^{+}, 2024-$, Lean)
$\star \operatorname{BB}(5)=47176870$ (July 2024, 40000 lines in Coq)

What are they good for?

There are various (potential) benefits.

- Establish correctness of difficult proofs
* Four Color Theorem (Gonthier+, 2005, Coq)
* Kepler Conjecture (Hales+, 2014, Isabelle/HOL Light)
\star A result on liquid vector spaces (Commelin ${ }^{+}$, 2022, Lean)
- Establish a unified database of mathematical definitions and results
- Enable large-scale collaboration on mathematical projects without the need of establishing trust beforehand or checking each other's work
\star Polynomial Freiman-Ruzsa Conjecture over $\mathbb{F}_{2}\left(\right.$ Tao ${ }^{+}$, 2023, Lean)
* Reduce FLT to 1980s mathematics (Buzzard ${ }^{+}$, 2024-, Lean)
$\star \operatorname{BB}(5)=47176870$ (July 2024, 40000 lines in Coq)
- Avoid mistakes in one's research

Motivation

Motivation

Corollary 9.10. Suppose that C / k is a smooth projective curve of genus 2 given by an integral Weierstrass model \mathcal{C} such that there are three nodes in the special fiber of \mathcal{C}. We say that \mathcal{C} is split if the two components A and E of the special fiber of $\mathcal{C}^{\min }$ are defined over \mathfrak{k}; otherwise \mathcal{C} is nonsplit. Let $v(\Delta)=m_{1}+m_{2}+m_{3}$ as above and set $M=m_{1} m_{2}+m_{1} m_{3}+m_{2} m_{3}$. :
(c) If two of the nodes lie in a quadratic extension of \mathfrak{k} and are conjugate over \mathfrak{k} and one is \mathfrak{k}-rational, then
$\beta= \begin{cases}\frac{m_{1}}{M} \max \left\{\left\lfloor\frac{m_{1}^{2}}{2}\right\rfloor+m_{1} m_{3},\left\lfloor\frac{m_{3}^{2}}{2}\right\rfloor+m_{1}\left\lfloor\frac{m_{3}}{2}\right\rfloor\right\} & \text { if } \mathcal{C} \text { is split, } \\ \frac{m_{1}}{2} & \text { if } \mathcal{C} \text { is nonsplit and } m_{1} \text { is even, } \\ 0 & \text { otherwise, }\end{cases}$ where m_{3} corresponds to the rational node (and $m_{1}=m_{2}$).

Motivation

Proof. The proof of (a) follows easily from Proposition 9.4.
For the other cases, note that in the nonsplit case some power of Frobenius acts as negation on the component group $\Phi(\overline{\mathfrak{k}})$, so the only elements of $\Phi(\mathfrak{k})$ are elements of order 2 in $\Phi(\overline{\mathfrak{k}})$, which correspond to $\left[B_{m_{1} / 2}-C_{m_{2} / 2}\right.$] if m_{1} and m_{2} are even (where μ takes the value $\frac{1}{4}\left(m_{1}+m_{2}\right)$), and similarly with the obvious cyclic permutations.

In the situation of (c), we must have $m_{1}=m_{2}$. If $P=\left[\left(P_{1}\right)-\left(P_{2}\right)\right] \in J(k)$ and $P_{1} \in C(\bar{k})$ maps to one of the conjugate nodes, then P_{2} must map to the other, so all $P \in J(k)$ must map to a component of the form [$B_{i}-C_{j}$] or $\left[D_{i}-D_{j}\right]$. Now the result in the split case follows from a case distinction depending on whether $m_{1} \leq m_{3}$ or not. In the nonsplit case, the only element of order 2 that is defined over \mathfrak{k} is [$B_{m_{1} / 2}-C_{m_{1} / 2}$] if it exists.

In the situation of (d), the group $\Phi(\mathfrak{k})$ is of order 3 (generated by $[E-A]$) in the split case and trivial in the nonsplit case.

Motivation

Proof. The proof of (a) follows easily from Proposition 9.4.
For the other cases, note that in the nonsplit case some power of Frobenius acts as negation on the component group $\Phi(\overline{\mathfrak{k}})$, so the only elements of $\Phi(\mathfrak{k})$ are elements of order 2 in $\Phi(\overline{\mathfrak{k}})$, which correspond to $\left[B_{m_{1} / 2}-C_{m_{2} / 2}\right.$] if m_{1} and m_{2} are even (where μ takes the value $\frac{1}{4}\left(m_{1}+m_{2}\right)$), and similarly with the obvious cyclic permutations.

In the situation of (c), we must have $m_{1}=m_{2}$. If $P=\left[\left(P_{1}\right)-\left(P_{2}\right)\right] \in J(k)$ and $P_{1} \in C(\bar{k})$ maps to one of the conjugate nodes, then P_{2} must map to the other, so all $P \in J(k)$ must map to a component of the form [$B_{i}-C_{j}$] or $\left[D_{i}-D_{j}\right]$. Now the result in the split case follows from a case distinction depending on whether $m_{1} \leq m_{3}$ or not. In the nonsplit case, the only element of order 2 that is defined over \mathfrak{k} is [$B_{m_{1} / 2}-C_{m_{1} / 2}$] if it exists.

In the situation of (d), the group $\Phi(\mathfrak{k})$ is of order 3 (generated by $[E-A]$) in the split case and trivial in the nonsplit case.

Motivation

Motivation

There are actually two mistakes in the statement and proof (but one is not visible here).

Motivation

There are actually two mistakes in the statement and proof (but one is not visible here).

It would be nice to be able to avoid such mistakes!

Motivation

There are actually two mistakes in the statement and proof (but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Motivation

There are actually two mistakes in the statement and proof (but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

Motivation

There are actually two mistakes in the statement and proof (but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.
(But: See https://github.com/MichaelStollBayreuth/Weights)

Motivation

There are actually two mistakes in the statement and proof (but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.
(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more arithmetic geometry to Lean!

Motivation

There are actually two mistakes in the statement and proof (but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.
(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more arithmetic geometry to Lean!

For example: Get a proof of Mordell's Conjecture into Mathlib!

Quick Live Demo

```
import Mathlib
open Nat
theorem infinitely_many_primes : \forall n : N, \exists p > n, p.Prime := by
    intro n
    let N := n ! + 1
    let p := N.minFac -- smallest prime divisor of `N = n! + 1`
    use p -- this will be the witness for the existential statement
    have hp : p.Prime := by -- first show that `p` is prime
        apply minFac_prime -- `N.minFac` is prime if `N # 1`
        have : n ! \not= 0 := factorial_ne_zero n
        omega -- tactic for solving linear arithmetic on `N` and `\mathbb{Z}
    constructor -- split the conjunction
    . -- prove `p > n`
    by_contra! h -- assume that `p s n`
    have hdvd : p | n ! := (Prime.dvd_factorial hp).mpr h
    have hdvd' : p | N := minFac_dvd N
    have : p | 1 := (Nat.dvd_add_iff_right hdvd).mpr hdvd'
    exact hp.not_dvd_one this -- contradiction to `ᄀ p | 1`
    . exact hp -- use proof of `p.Prime`
```


Disclaimer

Disclaimer

I have only very recently started to think about this.

Disclaimer

I have only very recently started to think about this.

So everything that follows is very preliminary
and needs some considerable fleshing-out.

Stating Mordell's Conjecture

Stating Mordell's Conjecture

theorem Mordell Faltings \{K\} [Field K] [NumberField K]
($\mathrm{X}:$ NiceCurve K) (h : genus $\mathrm{X} \geq 2$) :
Finite (Points X K) := by
sorry

Stating Mordell's Conjecture

```
theorem Mordell Faltings {K} [Field K] [NumberField K]
    (X : NiceCurve K) (h : genus X \geq 2) :
    Finite (Points X K) := by
    sorry
```

- Number fields are in Mathlib

Stating Mordell's Conjecture

```
theorem Mordell Faltings {K} [Field K] [NumberField K]
    (X : NiceCurve K) (h : genus X \geq 2) :
    Finite (Points X K) := by
    sorry
```

- Number fields are in Mathlib
- (Nice) curves not yet, but will be soon (two versions: schemes / function fields)

Stating Mordell's Conjecture

```
theorem Mordell Faltings {K} [Field K] [NumberField K]
    (X : NiceCurve K) (h : genus X \geq 2) :
    Finite (Points X K) := by
    sorry
```

- Number fields are in Mathlib
- (Nice) curves not yet, but will be soon (two versions: schemes / function fields)
- The genus will need a bit more work

Stating Mordell's Conjecture

```
theorem Mordell Faltings {K} [Field K] [NumberField K]
    (X : NiceCurve K) (h : genus X \geq 2) :
    Finite (Points X K) := by
    sorry
```

- Number fields are in Mathlib
- (Nice) curves not yet, but will be soon (two versions: schemes / function fields)
- The genus will need a bit more work
- Once curves are there, points are easy $\left(\right.$ Mor $_{\text {Spec K }}(\operatorname{Spec} K, X) /$ places with residue field $\left.=K\right)$

Which Proof?

Which Proof?

I will look at the proof via heights (Vojta, Bombieri):

Which Proof?

I will look at the proof via heights (Vojta, Bombieri):

- personal taste (I find it more accessible)

Which Proof?

I will look at the proof via heights (Vojta, Bombieri):

- personal taste (I find it more accessible)
- it leads to further possibilities:

Which Proof?

I will look at the proof via heights (Vojta, Bombieri):

- personal taste (I find it more accessible)
- it leads to further possibilities:
* bounds on \#X(K)

Which Proof?

I will look at the proof via heights (Vojta, Bombieri):

- personal taste (I find it more accessible)
- it leads to further possibilities:
* bounds on \#X(K)
* Mordell-Lang

Which Proof?

I will look at the proof via heights (Vojta, Bombieri):

- personal taste (I find it more accessible)
- it leads to further possibilities:
* bounds on \#X(K)
* Mordell-Lang
* uniformity results

Which Proof?

I will look at the proof via heights (Vojta, Bombieri):

- personal taste (I find it more accessible)
- it leads to further possibilities:
* bounds on \#X(K)
* Mordell-Lang
* uniformity results
- necessary material desirable for other projects

Which Proof?

I will look at the proof via heights (Vojta, Bombieri):

- personal taste (I find it more accessible)
- it leads to further possibilities:
\star bounds on \#X(K)
* Mordell-Lang
* uniformity results
- necessary material desirable for other projects

But of course, we also want to have the other results from Faltings's original paper eventually!

Why Lean+Mathlib?

Why Lean+Mathlib?

We need material from various areas of mathematics.

Why Lean+Mathlib?

We need material from various areas of mathematics.

Since we want to combine everything, we need it to be

- formalized in the same system
- in a compatible way.

Why Lean+Mathlib?

We need material from various areas of mathematics.

Since we want to combine everything, we need it to be

- formalized in the same system
- in a compatible way.

Mathlib provides a unified library of definitions and results, which is carefully designed
so that its various parts can talk to each other.

Why Lean+Mathlib?

We need material from various areas of mathematics.

Since we want to combine everything, we need it to be

- formalized in the same system
- in a compatible way.

Mathlib provides a unified library of definitions and results, which is carefully designed
so that its various parts can talk to each other.

Mathlib currently contains more than 80000 definitions and more than 150000 lemmas and theorems.

Reduction to Vojta's Inequality $+\varepsilon$

Reduction to Vojta's Inequality $+\varepsilon$

Lemma.
Let M be a finitely generated abelian group

Reduction to Vojta's Inequality $+\varepsilon$

Lemma.

Let M be a finitely generated abelian group
with a quadratic form $h: M \rightarrow \mathbb{R}$ such that $\#\{x \in M: h(x) \leq B\}<\infty$ for all $B \in \mathbb{R}$.

Reduction to Vojta's Inequality $+\varepsilon$

Lemma.

Let M be a finitely generated abelian group
with a quadratic form $h: M \rightarrow \mathbb{R}$ such that
$\#\{x \in M: h(x) \leq B\}<\infty$ for all $B \in \mathbb{R}$.
Let $S \subset M$ be a subset,

Reduction to Vojta's Inequality $+\varepsilon$

Lemma.

Let M be a finitely generated abelian group
with a quadratic form $h: M \rightarrow \mathbb{R}$ such that
$\#\{x \in M: h(x) \leq B\}<\infty$ for all $B \in \mathbb{R}$.
Let $S \subset M$ be a subset, $C>0$ and $\gamma<1$ such that
for all $x, y \in S$ with $h(x) \geq C$ and $h(y) \geq C h(x)$, we have
(\star)

$$
h(x+y)-h(x-y) \leq 4 \gamma \sqrt{h(x) h(y)} .
$$

Reduction to Vojta's Inequality $+\varepsilon$

Lemma.

Let M be a finitely generated abelian group
with a quadratic form $h: M \rightarrow \mathbb{R}$ such that
$\#\{x \in M: h(x) \leq B\}<\infty$ for all $B \in \mathbb{R}$.
Let $S \subset M$ be a subset, $C>0$ and $\gamma<1$ such that
for all $x, y \in S$ with $h(x) \geq C$ and $h(y) \geq C h(x)$, we have
($*) \quad h(x+y)-h(x-y) \leq 4 \gamma \sqrt{h(x) h(y)}$.
Then S is finite.

Reduction to Vojta's Inequality $+\varepsilon$

Lemma.

Let M be a finitely generated abelian group
with a quadratic form $h: M \rightarrow \mathbb{R}$ such that
$\#\{x \in M: h(x) \leq B\}<\infty$ for all $B \in \mathbb{R}$.
Let $S \subset M$ be a subset, $C>0$ and $\gamma<1$ such that
for all $x, y \in S$ with $h(x) \geq C$ and $h(y) \geq C h(x)$, we have
($*) \quad h(x+y)-h(x-y) \leq 4 \gamma \sqrt{h(x) h(y)}$.
Then S is finite.

Think $S=X(K), M=J(K), h=\widehat{h}$.

Reduction to Vojta's Inequality $+\varepsilon$

Lemma.

Let M be a finitely generated abelian group
with a quadratic form $h: M \rightarrow \mathbb{R}$ such that
$\#\{x \in M: h(x) \leq B\}<\infty$ for all $B \in \mathbb{R}$.
Let $S \subset M$ be a subset, $C>0$ and $\gamma<1$ such that
for all $x, y \in S$ with $h(x) \geq C$ and $h(y) \geq C h(x)$, we have
($*) \quad h(x+y)-h(x-y) \leq 4 \gamma \sqrt{h(x) h(y)}$.
Then S is finite.

Think $S=X(K), M=J(K), h=\widehat{h}$.

This should be easy to formalize (and is partly done).

Some Requirements

Some Requirements

- M finitely generated: Mordell-Weil Theorem

Some Requirements

- M finitely generated: Mordell-Weil Theorem * weak M-W: M/2M finite

Some Requirements

- M finitely generated: Mordell-Weil Theorem
* weak M-W: M/2M finite
- Selmer groups
- Galois cohomology, Néron-Ogg-Shafarevich
- finiteness statements (class group, units f.g.)

Some Requirements

- M finitely generated: Mordell-Weil Theorem
* weak M-W: M/2M finite
- Selmer groups
- Galois cohomology, Néron-Ogg-Shafarevich
- finiteness statements (class group, units f.g.)
* weak $\mathrm{M}-\mathrm{W} \Rightarrow \mathrm{M}-\mathrm{W}$: heights

Some Requirements

- M finitely generated: Mordell-Weil Theorem
* weak M-W: M/2M finite
- Selmer groups
- Galois cohomology, Néron-Ogg-Shafarevich
- finiteness statements (class group, units f.g.)
* weak $\mathrm{M}-\mathrm{W} \Rightarrow \mathrm{M}-\mathrm{W}$: heights
- canonical height function satisfying Northcott

Some Requirements

- M finitely generated: Mordell-Weil Theorem
* weak $\mathrm{M}-\mathrm{W}$: $\mathrm{M} / 2 \mathrm{M}$ finite
- Selmer groups
- Galois cohomology, Néron-Ogg-Shafarevich
- finiteness statements (class group, units f.g.)
* weak $\mathrm{M}-\mathrm{W} \Rightarrow \mathrm{M}-\mathrm{W}$: heights
- canonical height function satisfying Northcott
* heights again

Some Requirements

- M finitely generated: Mordell-Weil Theorem
* weak $\mathrm{M}-\mathrm{W}$: $\mathrm{M} / 2 \mathrm{M}$ finite
- Selmer groups
- Galois cohomology, Néron-Ogg-Shafarevich
- finiteness statements (class group, units f.g.)
* weak $\mathrm{M}-\mathrm{W} \Rightarrow \mathrm{M}-\mathrm{W}$: heights
- canonical height function satisfying Northcott
* heights again

Before we can do these, we need

- abelian varieties

Some Requirements

- M finitely generated: Mordell-Weil Theorem
* weak $\mathrm{M}-\mathrm{W}$: $\mathrm{M} / 2 \mathrm{M}$ finite
- Selmer groups
- Galois cohomology, Néron-Ogg-Shafarevich
- finiteness statements (class group, units f.g.)
* weak $\mathrm{M}-\mathrm{W} \Rightarrow \mathrm{M}-\mathrm{W}$: heights
- canonical height function satisfying Northcott
* heights again

Before we can do these, we need

- abelian varieties
- Jacobian varieties (\rightsquigarrow M)

Some Requirements

- M finitely generated: Mordell-Weil Theorem
* weak $\mathrm{M}-\mathrm{W}$: $\mathrm{M} / 2 \mathrm{M}$ finite
- Selmer groups
- Galois cohomology, Néron-Ogg-Shafarevich
- finiteness statements (class group, units f.g.)
* weak $\mathrm{M}-\mathrm{W} \Rightarrow \mathrm{M}-\mathrm{W}$: heights
- canonical height function satisfying Northcott
* heights again

Before we can do these, we need

- abelian varieties
- Jacobian varieties ($\rightsquigarrow \mathrm{M}$)
\star Abel-Jacobi map $(\rightsquigarrow S \hookrightarrow M)$

The Hard Part: Vojta's Inequality

The Hard Part: Vojta's Inequality

About 24 pages (Chapter 11) of [Bombieri-Gubler], using a bunch of serious algebraic geometry, e.g.,

The Hard Part: Vojta's Inequality

About 24 pages (Chapter 11) of [Bombieri-Gubler], using a bunch of serious algebraic geometry, e.g.,

- Riemann-Roch on X and $X \times X$

The Hard Part: Vojta's Inequality

About 24 pages (Chapter 11) of [Bombieri-Gubler], using a bunch of serious algebraic geometry, e.g.,

- Riemann-Roch on X and $X \times X$
- Intersection theory on $X \times X$

The Hard Part: Vojta's Inequality

About 24 pages (Chapter 11) of [Bombieri-Gubler], using a bunch of serious algebraic geometry, e.g.,

- Riemann-Roch on X and $X \times X$
- Intersection theory on $X \times X$
- The relation between (very ample) divisors and projective embeddings, description of global sections

The Hard Part: Vojta's Inequality

About 24 pages (Chapter 11) of [Bombieri-Gubler], using a bunch of serious algebraic geometry, e.g.,

- Riemann-Roch on X and $X \times X$
- Intersection theory on $X \times X$
- The relation between (very ample) divisors and projective embeddings, description of global sections
- Sheaf cohomology on (products of) projective spaces

The Hard Part: Vojta's Inequality

About 24 pages (Chapter 11) of [Bombieri-Gubler], using a bunch of serious algebraic geometry, e.g.,

- Riemann-Roch on X and $X \times X$
- Intersection theory on $X \times X$
- The relation between (very ample) divisors and projective embeddings, description of global sections
- Sheaf cohomology on (products of) projective spaces
plus diophantine approximation:

The Hard Part: Vojta's Inequality

About 24 pages (Chapter 11) of [Bombieri-Gubler], using a bunch of serious algebraic geometry, e.g.,

- Riemann-Roch on X and $X \times X$
- Intersection theory on $X \times X$
- The relation between (very ample) divisors and projective embeddings, description of global sections
- Sheaf cohomology on (products of) projective spaces
plus diophantine approximation:
- Siegel's Lemma (over K)

The Hard Part: Vojta's Inequality

About 24 pages (Chapter 11) of [Bombieri-Gubler], using a bunch of serious algebraic geometry, e.g.,

- Riemann-Roch on X and $X \times X$
- Intersection theory on $X \times X$
- The relation between (very ample) divisors and projective embeddings, description of global sections
- Sheaf cohomology on (products of) projective spaces
plus diophantine approximation:
- Siegel's Lemma (over K)
- Roth's Lemma

Lower-Hanging Fruit?

Lower-Hanging Fruit?

One idea:

Lower-Hanging Fruit?

One idea:
First do odd degree hyperelliptic curves over \mathbb{Q}

Lower-Hanging Fruit?

One idea:
First do odd degree hyperelliptic curves over \mathbb{Q}

- Can do many things explicitly

Lower-Hanging Fruit?

One idea:
First do odd degree hyperelliptic curves over \mathbb{Q}

- Can do many things explicitly
- Theta divisor is symmetric

Lower-Hanging Fruit?

One idea:
First do odd degree hyperelliptic curves over \mathbb{Q}

- Can do many things explicitly
- Theta divisor is symmetric
- Hyperelliptic involution gives another divisor on $X \times X$

Lower-Hanging Fruit?

One idea:
First do odd degree hyperelliptic curves over \mathbb{Q}

- Can do many things explicitly
- Theta divisor is symmetric
- Hyperelliptic involution gives another divisor on $X \times X$

Another idea:

Lower-Hanging Fruit?

One idea:
First do odd degree hyperelliptic curves over \mathbb{Q}

- Can do many things explicitly
- Theta divisor is symmetric
- Hyperelliptic involution gives another divisor on $X \times X$

Another idea:
Formalize Chabauty-Coleman

Lower-Hanging Fruit?

One idea:
First do odd degree hyperelliptic curves over \mathbb{Q}

- Can do many things explicitly
- Theta divisor is symmetric
- Hyperelliptic involution gives another divisor on $X \times X$

Another idea:
Formalize Chabauty-Coleman

- Can bypass Mordell-Weil

Lower-Hanging Fruit?

One idea:
First do odd degree hyperelliptic curves over \mathbb{Q}

- Can do many things explicitly
- Theta divisor is symmetric
- Hyperelliptic involution gives another divisor on $X \times X$

Another idea:
Formalize Chabauty-Coleman

- Can bypass Mordell-Weil
- Can perhaps replace J by Pic ${ }^{0}$

Lower-Hanging Fruit?

One idea:
First do odd degree hyperelliptic curves over \mathbb{Q}

- Can do many things explicitly
- Theta divisor is symmetric
- Hyperelliptic involution gives another divisor on $X \times X$

Another idea:
Formalize Chabauty-Coleman

- Can bypass Mordell-Weil
- Can perhaps replace J by Pic ${ }^{0}$
- But: need to formalize p-adic integration

Outlook

Outlook

- Algebraic geometry in Mathlib is being developed

Outlook

- Algebraic geometry in Mathlib is being developed
- Diophantine approximation (\rightsquigarrow Roth's Theorem) as well

Outlook

- Algebraic geometry in Mathlib is being developed
- Diophantine approximation (\rightsquigarrow Roth's Theorem) as well
- Need to develop the theory of heights in Mathlib

Outlook

- Algebraic geometry in Mathlib is being developed
- Diophantine approximation (\rightsquigarrow Roth's Theorem) as well
- Need to develop the theory of heights in Mathlib
- Based on the above, need to formalize the proof of Vojta's inequality

Outlook

- Algebraic geometry in Mathlib is being developed
- Diophantine approximation (\rightsquigarrow Roth's Theorem) as well
- Need to develop the theory of heights in Mathlib
- Based on the above, need to formalize the proof of Vojta's inequality

Optimistic time frame: A few years

Outlook

- Algebraic geometry in Mathlib is being developed
- Diophantine approximation (\rightsquigarrow Roth's Theorem) as well
- Need to develop the theory of heights in Mathlib
- Based on the above, need to formalize the proof of Vojta's inequality

Optimistic time frame: A few years

Maybe better automation and/or AI methods will help speed up things

Thank You!

