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Prologue: a Challenge

Challenge:
Given C > 0, find (or prove the existence of)
a nice curve X/Q of genus g ≥ 2 such that #X(Q) ≥ C · g!

• C = 321 (g = 2; St., Elkies)

• C = 8 (g → ∞, hyperelliptic; Mestre(?))

• #X(Q) ≤ (8r+ 33)g (hyperelliptic, r = rk J(Q) ≤ g− 3; St.)

• Unlikely intersection heuristic: #X(Q) ≪ g+ r

Challenge ′:
Beat C = 8 for g → ∞!
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Proof Assistants

A proof assistant or interactive theorem prover (ITP)
is a piece of computer software that

➊ allows to construct a proof in a formal language

➋ and checks it for correctness.

There are various such systems around (list not exhaustive):

• Isabelle (1986)
• Coq/Rocq (1989)
• Agda (1999; 2007: Agda 2)
• Lean (2013; 2021: Lean 4)

Lean has a large cohesive and actively developed library Mathlib
that contains definitions, statements and proofs
comprising most ungergraduate and quite some higher-level mathematics.
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What are they good for?

There are various (potential) benefits.

• Establish correctness of difficult proofs

⋆ Four Color Theorem (Gonthier+, 2005, Coq)
⋆ Kepler Conjecture (Hales+, 2014, Isabelle/HOL Light)
⋆ A result on liquid vector spaces (Commelin+, 2022, Lean)

• Establish a unified database of mathematical definitions and results

• Enable large-scale collaboration on mathematical projects
without the need of establishing trust beforehand
or checking each other’s work

⋆ Polynomial Freiman-Ruzsa Conjecture over F2 (Tao+, 2023, Lean)
⋆ Reduce FLT to 1980s mathematics (Buzzard+, 2024–, Lean)
⋆ BB(5) = 47 176 870 (July 2024, 40 000 lines in Coq)

• Avoid mistakes in one’s research
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Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more arithmetic geometry to Lean!

For example: Get a proof of Mordell’s Conjecture into Mathlib!
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Quick Live Demo



Disclaimer

I have only very recently started to think about this.

So everything that follows is very preliminary
and needs some considerable fleshing-out.
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Stating Mordell’s Conjecture

• Number fields are in Mathlib

• (Nice) curves not yet, but will be soon
(two versions: schemes / function fields)

• The genus will need a bit more work

• Once curves are there, points are easy
(MorSpecK(SpecK,X) / places with residue field = K)
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Which Proof?

I will look at the proof via heights (Vojta, Bombieri):

• personal taste (I find it more accessible)

• it leads to further possibilities:

⋆ bounds on #X(K)

⋆ Mordell-Lang

⋆ uniformity results

• necessary material desirable for other projects

But of course, we also want to have the other results
from Faltings’s original paper eventually!
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Why Lean+Mathlib?

We need material from various areas of mathematics.

Since we want to combine everything, we need it to be

• formalized in the same system

• in a compatible way.

Mathlib provides a unified library of definitions and results,
which is carefully designed
so that its various parts can talk to each other.

Mathlib currently contains more than 80 000 definitions
and more than 150 000 lemmas and theorems.
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Reduction to Vojta’s Inequality + ε

Lemma.
Let M be a finitely generated abelian group
with a quadratic form h : M → R such that
#{x ∈ M : h(x) ≤ B} < ∞ for all B ∈ R.
Let S ⊂ M be a subset, C > 0 and γ < 1 such that
for all x, y ∈ S with h(x) ≥ C and h(y) ≥ Ch(x), we have
(⋆) h(x+ y) − h(x− y) ≤ 4γ

√
h(x)h(y) .

Then S is finite.

Think S = X(K), M = J(K), h = ĥ.

This should be easy to formalize (and is partly done).



Reduction to Vojta’s Inequality + ε

Lemma.
Let M be a finitely generated abelian group
with a quadratic form h : M → R such that
#{x ∈ M : h(x) ≤ B} < ∞ for all B ∈ R.
Let S ⊂ M be a subset, C > 0 and γ < 1 such that
for all x, y ∈ S with h(x) ≥ C and h(y) ≥ Ch(x), we have
(⋆) h(x+ y) − h(x− y) ≤ 4γ

√
h(x)h(y) .

Then S is finite.

Think S = X(K), M = J(K), h = ĥ.
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This should be easy to formalize (and is partly done).



Some Requirements

• M finitely generated: Mordell-Weil Theorem

⋆ weak M-W: M/2M finite

◦ Selmer groups

◦ Galois cohomology, Néron-Ogg-Shafarevich

◦ finiteness statements (class group, units f.g.)

⋆ weak M-W ⇒ M-W: heights

• canonical height function satisfying Northcott

⋆ heights again

Before we can do these, we need

• abelian varieties

• Jacobian varieties (⇝M)

⋆ Abel-Jacobi map (⇝ S ↪→ M)



Some Requirements

• M finitely generated: Mordell-Weil Theorem

⋆ weak M-W: M/2M finite

◦ Selmer groups

◦ Galois cohomology, Néron-Ogg-Shafarevich

◦ finiteness statements (class group, units f.g.)

⋆ weak M-W ⇒ M-W: heights

• canonical height function satisfying Northcott

⋆ heights again

Before we can do these, we need

• abelian varieties

• Jacobian varieties (⇝M)

⋆ Abel-Jacobi map (⇝ S ↪→ M)



Some Requirements

• M finitely generated: Mordell-Weil Theorem

⋆ weak M-W: M/2M finite

◦ Selmer groups

◦ Galois cohomology, Néron-Ogg-Shafarevich

◦ finiteness statements (class group, units f.g.)

⋆ weak M-W ⇒ M-W: heights

• canonical height function satisfying Northcott

⋆ heights again

Before we can do these, we need

• abelian varieties

• Jacobian varieties (⇝M)

⋆ Abel-Jacobi map (⇝ S ↪→ M)



Some Requirements

• M finitely generated: Mordell-Weil Theorem

⋆ weak M-W: M/2M finite

◦ Selmer groups

◦ Galois cohomology, Néron-Ogg-Shafarevich

◦ finiteness statements (class group, units f.g.)

⋆ weak M-W ⇒ M-W: heights

• canonical height function satisfying Northcott

⋆ heights again

Before we can do these, we need

• abelian varieties

• Jacobian varieties (⇝M)

⋆ Abel-Jacobi map (⇝ S ↪→ M)



Some Requirements

• M finitely generated: Mordell-Weil Theorem

⋆ weak M-W: M/2M finite

◦ Selmer groups

◦ Galois cohomology, Néron-Ogg-Shafarevich

◦ finiteness statements (class group, units f.g.)

⋆ weak M-W ⇒ M-W: heights

• canonical height function satisfying Northcott

⋆ heights again

Before we can do these, we need

• abelian varieties

• Jacobian varieties (⇝M)

⋆ Abel-Jacobi map (⇝ S ↪→ M)



Some Requirements

• M finitely generated: Mordell-Weil Theorem

⋆ weak M-W: M/2M finite

◦ Selmer groups

◦ Galois cohomology, Néron-Ogg-Shafarevich

◦ finiteness statements (class group, units f.g.)

⋆ weak M-W ⇒ M-W: heights

• canonical height function satisfying Northcott

⋆ heights again

Before we can do these, we need

• abelian varieties

• Jacobian varieties (⇝M)

⋆ Abel-Jacobi map (⇝ S ↪→ M)



Some Requirements

• M finitely generated: Mordell-Weil Theorem

⋆ weak M-W: M/2M finite

◦ Selmer groups

◦ Galois cohomology, Néron-Ogg-Shafarevich

◦ finiteness statements (class group, units f.g.)

⋆ weak M-W ⇒ M-W: heights

• canonical height function satisfying Northcott

⋆ heights again

Before we can do these, we need

• abelian varieties

• Jacobian varieties (⇝M)

⋆ Abel-Jacobi map (⇝ S ↪→ M)



Some Requirements

• M finitely generated: Mordell-Weil Theorem

⋆ weak M-W: M/2M finite

◦ Selmer groups

◦ Galois cohomology, Néron-Ogg-Shafarevich

◦ finiteness statements (class group, units f.g.)

⋆ weak M-W ⇒ M-W: heights

• canonical height function satisfying Northcott

⋆ heights again

Before we can do these, we need

• abelian varieties

• Jacobian varieties (⇝M)

⋆ Abel-Jacobi map (⇝ S ↪→ M)



Some Requirements

• M finitely generated: Mordell-Weil Theorem

⋆ weak M-W: M/2M finite

◦ Selmer groups

◦ Galois cohomology, Néron-Ogg-Shafarevich

◦ finiteness statements (class group, units f.g.)

⋆ weak M-W ⇒ M-W: heights

• canonical height function satisfying Northcott

⋆ heights again

Before we can do these, we need

• abelian varieties

• Jacobian varieties (⇝M)

⋆ Abel-Jacobi map (⇝ S ↪→ M)



Some Requirements

• M finitely generated: Mordell-Weil Theorem

⋆ weak M-W: M/2M finite

◦ Selmer groups

◦ Galois cohomology, Néron-Ogg-Shafarevich

◦ finiteness statements (class group, units f.g.)

⋆ weak M-W ⇒ M-W: heights

• canonical height function satisfying Northcott

⋆ heights again

Before we can do these, we need

• abelian varieties

• Jacobian varieties (⇝M)

⋆ Abel-Jacobi map (⇝ S ↪→ M)



The Hard Part: Vojta’s Inequality

About 24 pages (Chapter 11) of [Bombieri-Gubler],
using a bunch of serious algebraic geometry, e.g.,

• Riemann-Roch on X and X× X

• Intersection theory on X× X

• The relation between (very ample) divisors and projective embeddings,
description of global sections

• Sheaf cohomology on (products of) projective spaces

plus diophantine approximation:

• Siegel’s Lemma (over K)

• Roth’s Lemma
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Lower-Hanging Fruit?

One idea:
First do odd degree hyperelliptic curves over Q
• Can do many things explicitly

• Theta divisor is symmetric

• Hyperelliptic involution gives another divisor on X× X

Another idea:
Formalize Chabauty-Coleman

• Can bypass Mordell-Weil

• Can perhaps replace J by Pic0

• But: need to formalize p-adic integration
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Outlook

• Algebraic geometry in Mathlib is being developed

• Diophantine approximation (⇝ Roth’s Theorem) as well

• Need to develop the theory of heights in Mathlib

• Based on the above, need to formalize the proof of Vojta’s inequality

Optimistic time frame: A few years

Maybe better automation and/or AI methods will help speed up things
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Thank You!


