Algebraic points on curves

DEPARTMENT OF MATHEMATICS UNIVERSITY of WASHINGTON

Bianca Viray

I completed this work on the ancestral unceded lands of the Duwamish, Suquamish, Tulalip and Muckleshoot nations.

Algebraic points on curves

Based in part on joint work with:

- **Bianca Viray**
- + Bourdon, Ejder, Liu, and Odomodu 2019 + Vogt arXiv:2406.14353 + Balçik, Chan, and Liu (*ongoing*)

The Mordell conjecture

Let *C* be a nice curve over a number field *k*. If the genus of *C* is at least 2, then C(k) is finite.

Geometry controls arithmetic!

The Mordell conjecture (Faltings, 1983)

If the genus of C is at least 2,

What does this say about the arithmetic of C?

Let C be a nice curve over a number field k. then C(k) is finite.

The Mordell conjecture (Faltings, 1983)

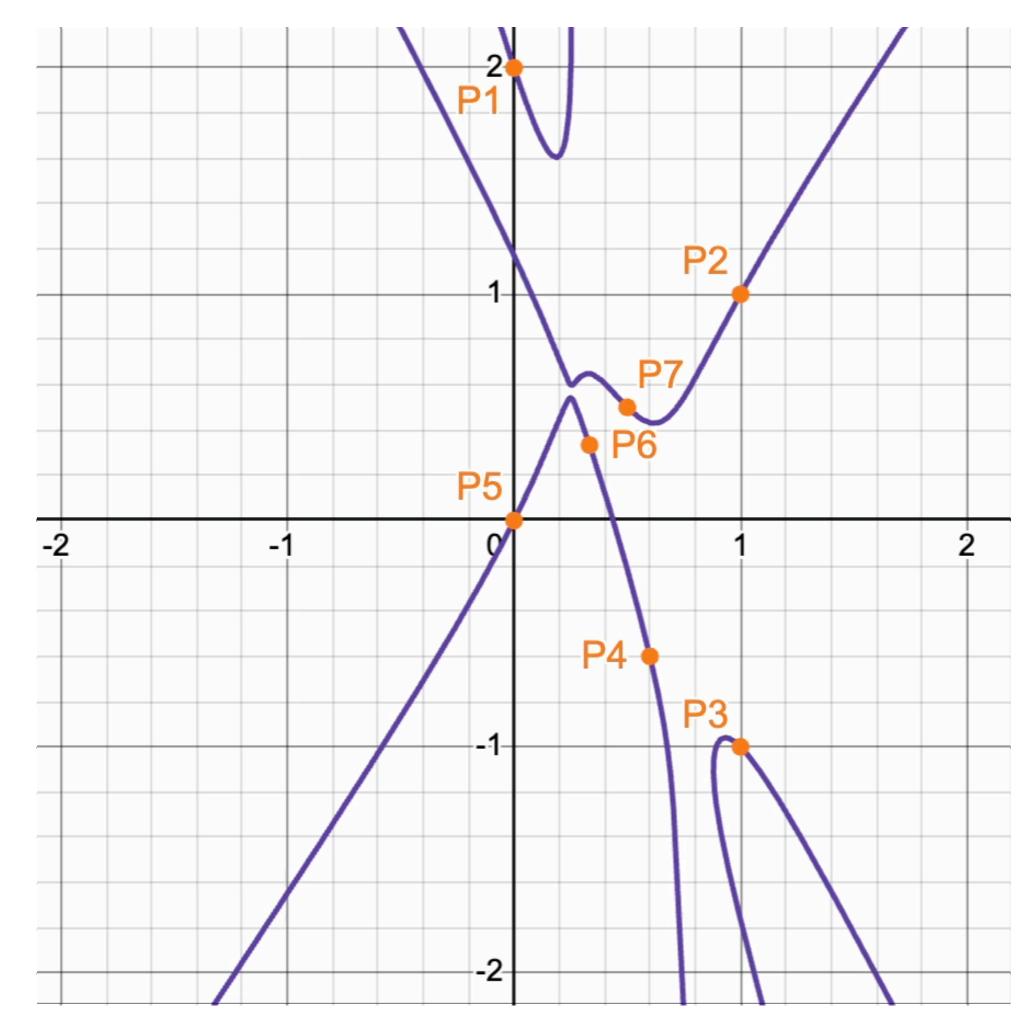
If the genus of C is at least 2,

- Let C be a nice curve over a number field k.
 - then *C*(*k*) is a **proper Zariski closed subset**.

What does this say about the arithmetic of *C*?

If the genus of C is at least 2, Mordell Conj. then *C*(*k*) is a **proper Zariski closed subset**.

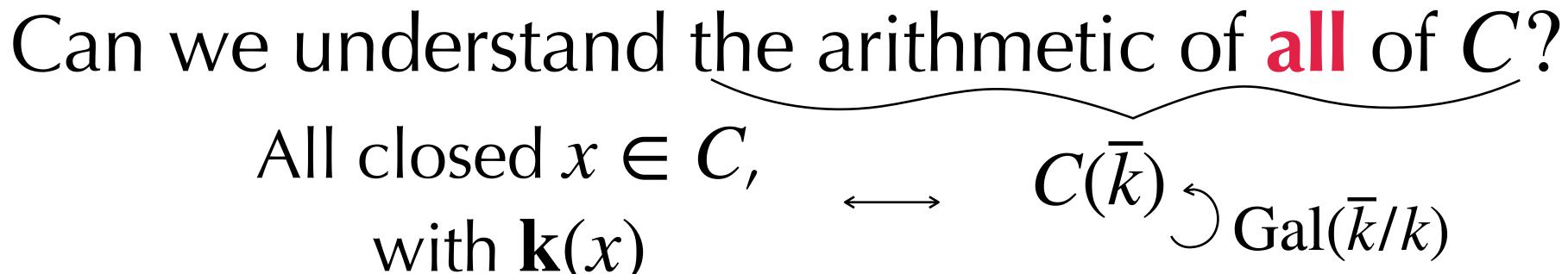
What does this say about the arithmetic of *C*? C(k) reveals very little about C!



Geometry controls arithmetic, yet C(k) reveals very little about C!

All closed $x \in C$, with $\mathbf{k}(x)$

> closed $x \in C \longleftrightarrow$ a Gal(k/k)-orbit $\mathbf{k}(x) \longleftrightarrow$ field of definition of $y \in C(\overline{k})_{\sim}$



Can we understand the arithmetic of all of C?

Can we understand all closed points of C? ... a Zariski dense set of closed points?



Can we understand a Zariski dense set of closed points?

Not Zariski dense

Visualizations inspired by Hector Pasten

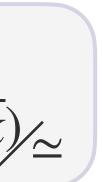
Zariski dense

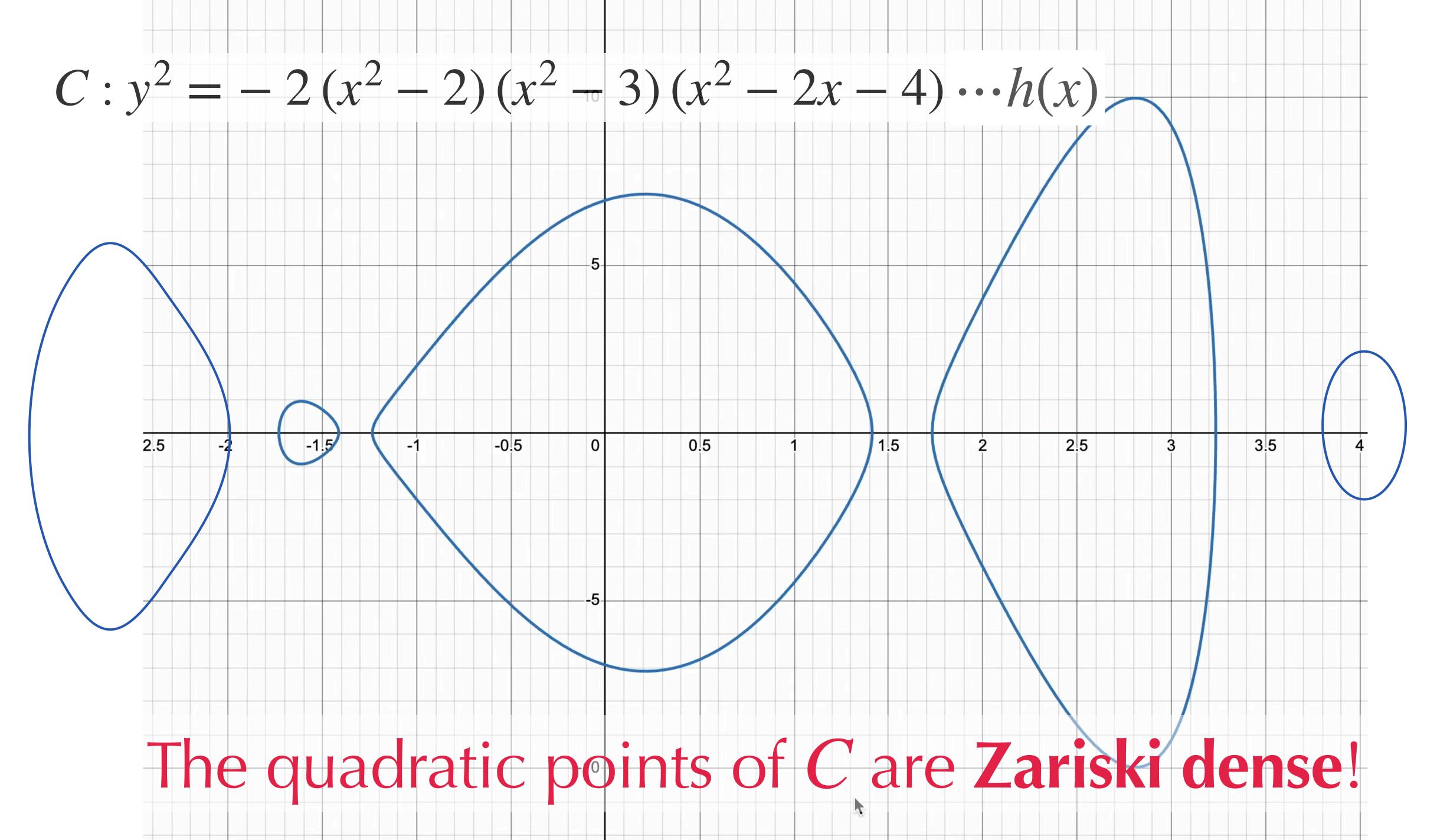
Can we understand a Zariski dense set of closed points?

Not Zariski dense

Visualizations inspired by Hector Pasten

Zariski dense





• • •

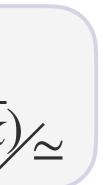
Can we understand a Zariski dense set of closed points?

Not Zariski dense

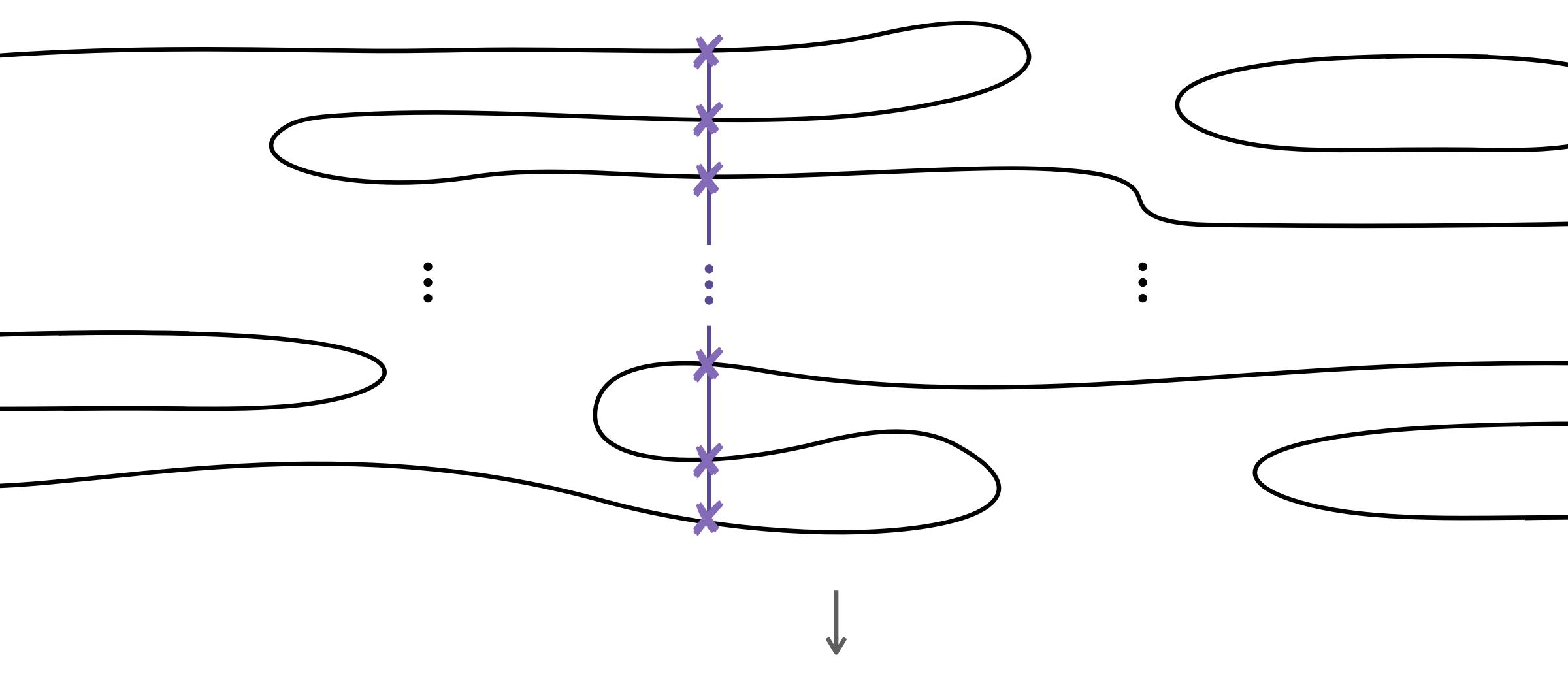
Visualizations inspired by Hector Pasten

All closed points Quadratic pts (if $C: y^2 = f(x)$)

Zariski dense

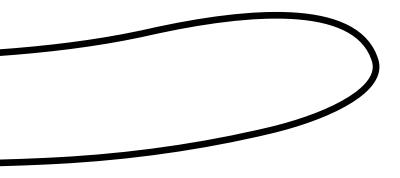


What if $C \rightarrow \mathbb{P}^1$ has degree d > 2?



What if $C \to \mathbb{P}^1$ has degree d > 2?

Hilbert's Irreducibility Theorem The fibers over $\mathbb{P}^1(k)$ that are irreducible are Zariski dense on C.



Can we understand a Zariski dense set of closed points?

Assume genus(C) ≥ 2

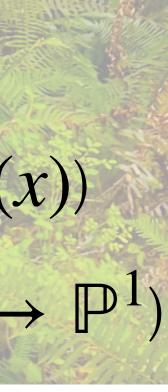
Not Zariski dense

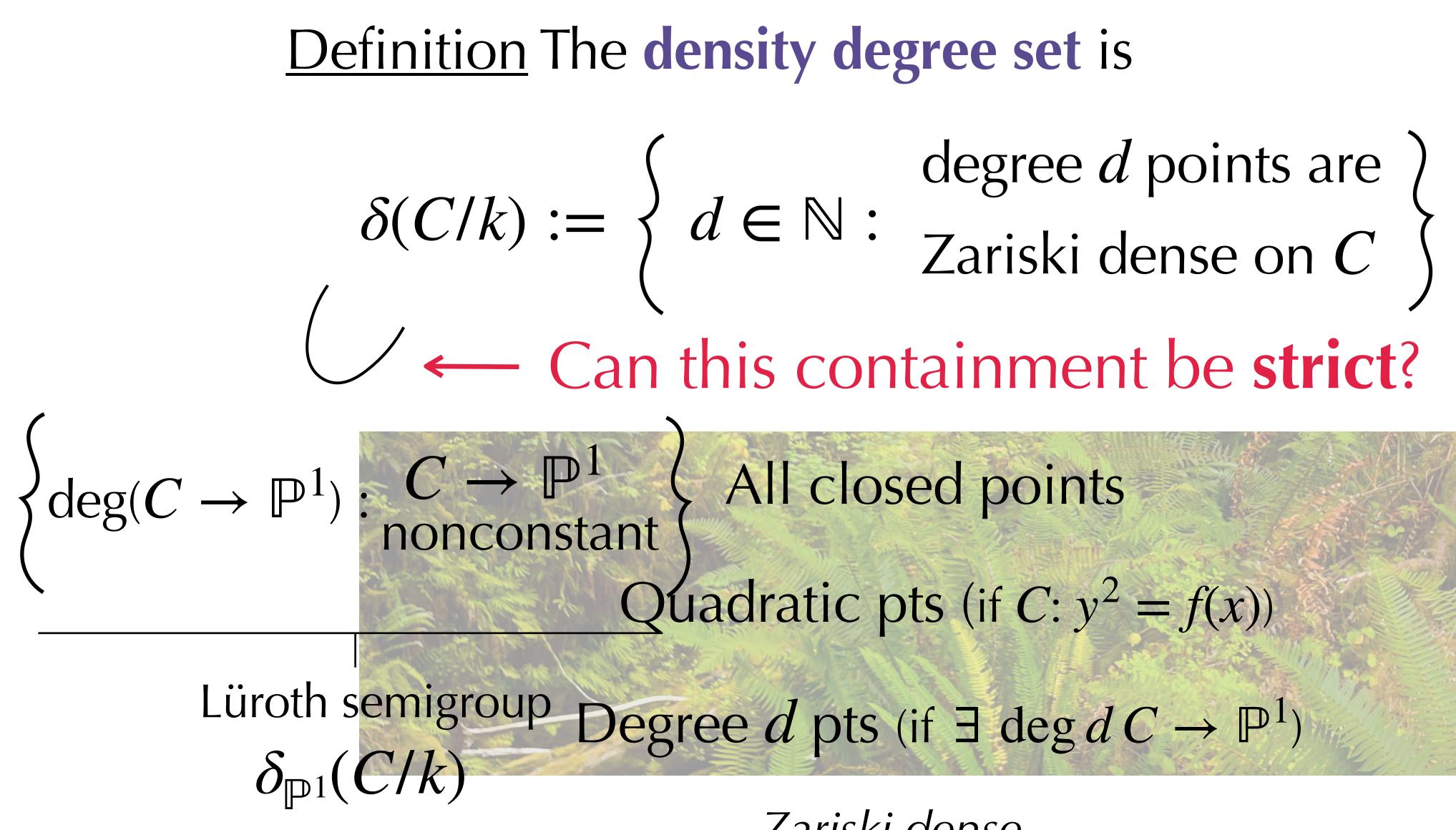
 $\{x \in C : \mathbf{k}(x) \simeq L\}$

Visualizations inspired by Hector Pasten

All closed points Quadratic pts (if $C: y^2 = f(x)$) **Degree** *d* **pts** (if $\exists \deg d C \to \mathbb{P}^1$)

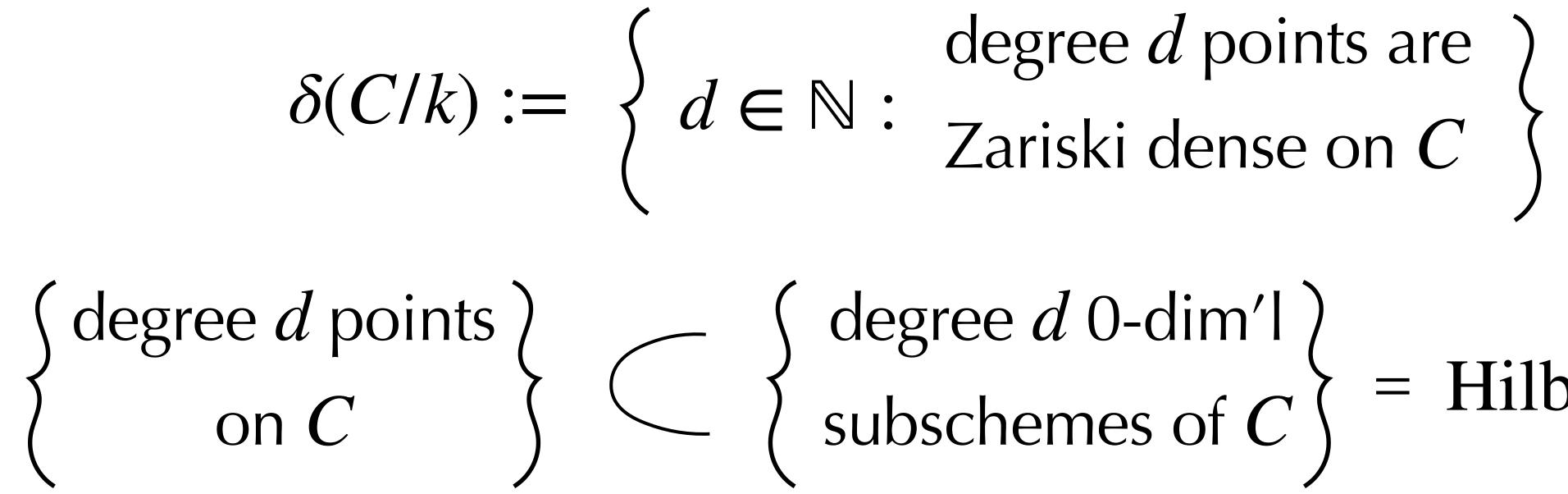
Zariski dense





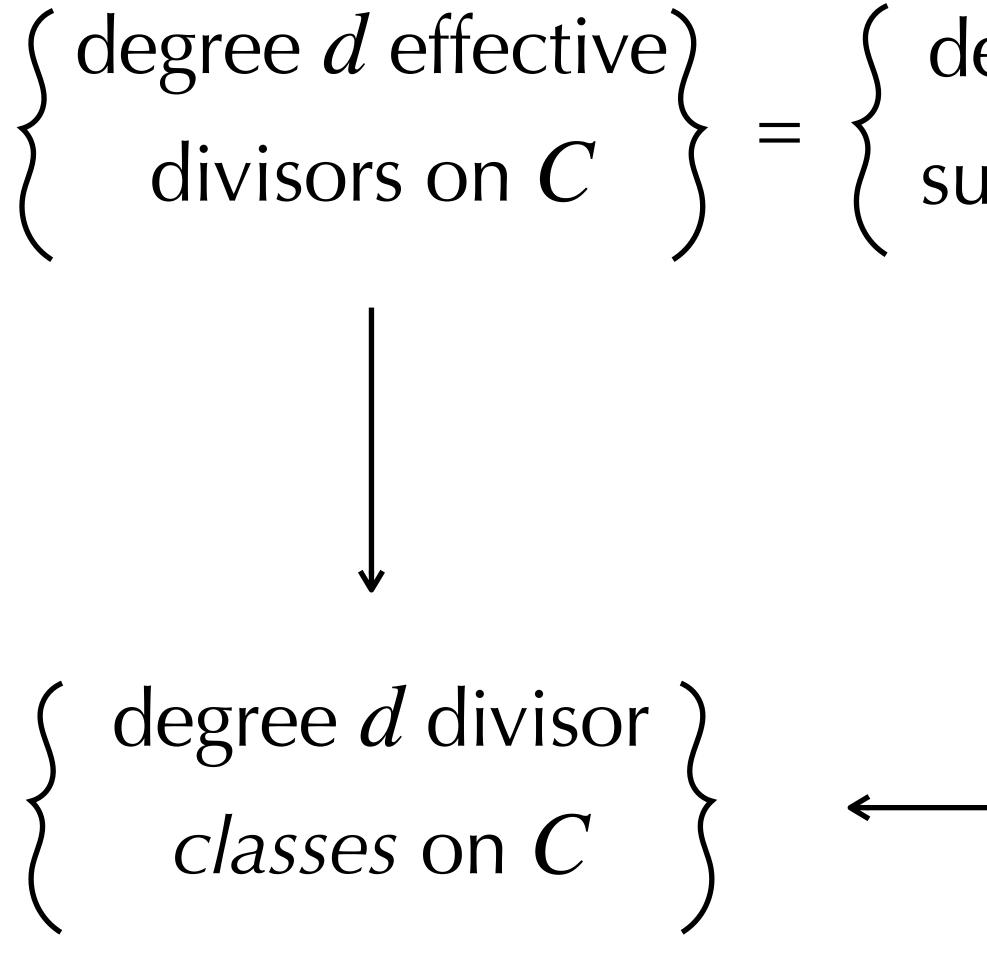
Quadratic pts (if $C: y^2 = f(x)$)

Zariski dense



If $d \in \delta(C/k)$

B positive dim'l $Z \subset \operatorname{Sym}_{C}^{d}$ with Zariski dense k-points



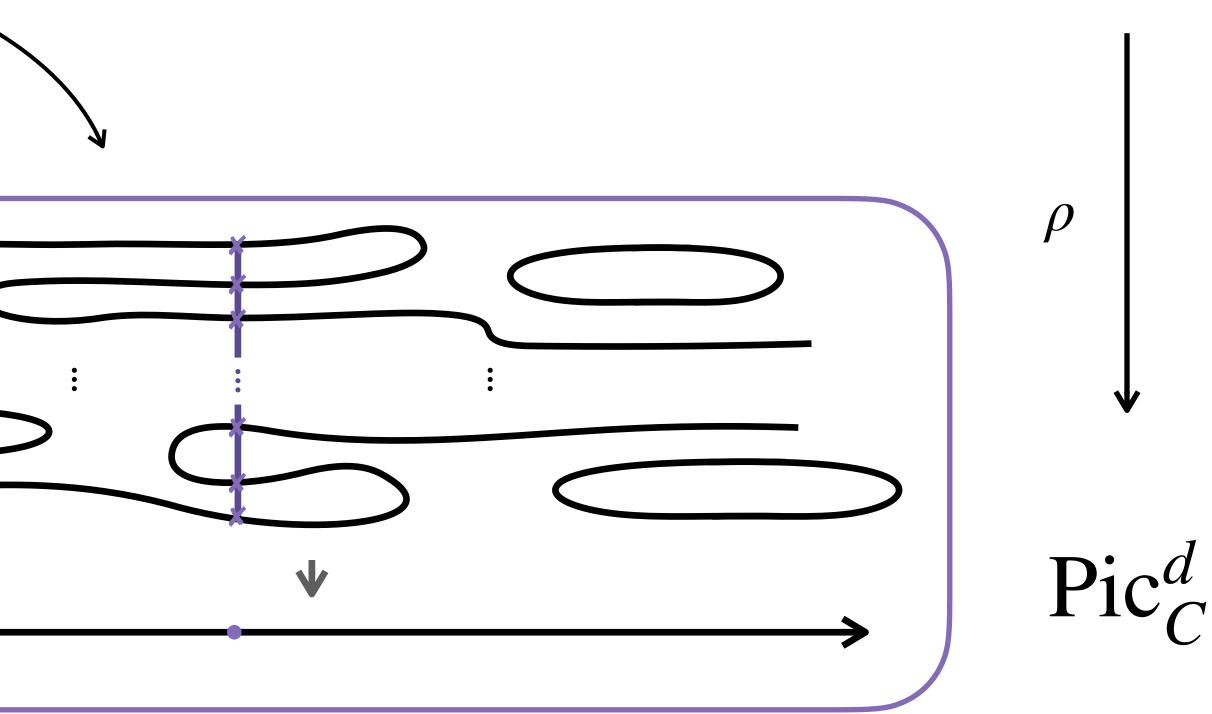
$\begin{cases} \text{degree } d \text{ effective} \\ \text{divisors on } C \end{cases} = \begin{cases} \text{degree } d \text{ 0-dim'l} \\ \text{subschemes of } C \end{cases} = \text{Hilb}_C^d = \text{Sym}_C^d \end{cases}$

 $\operatorname{Pic}^{d}_{C}$

Assume dim $\rho(Z) = 0$ $\mathbb{Z}[D] \simeq \mathbb{P}^N \hookrightarrow \mathbb{P}^1$ $N \ge 1$ • [D] 1

Z = |D| give \mathbb{P}^1 -parameterized points

 $\operatorname{Sym}^d_{\mathcal{C}}$



Assume dim $\rho(Z) = 0$ $Z \subset |D| \simeq \mathbb{P}^N \hookrightarrow \mathbb{P}^1$

• [D]

of the following hold:

- $\exists \pi \colon C \to \mathbb{P}^1$ with $\pi(x) \in \mathbb{P}^1(k)$ & $\deg(\pi) = \deg(x)$;
- $\exists \mathbb{P}^1 \hookrightarrow \operatorname{Sym}^d_C$ whose image contains *x*;
- $h^0(C, \mathcal{O}(x)) \ge 2$.

Otherwise, x is \mathbb{P}^1 -isolated.

Sym^a

 $\operatorname{Pic}^{d}_{C}$

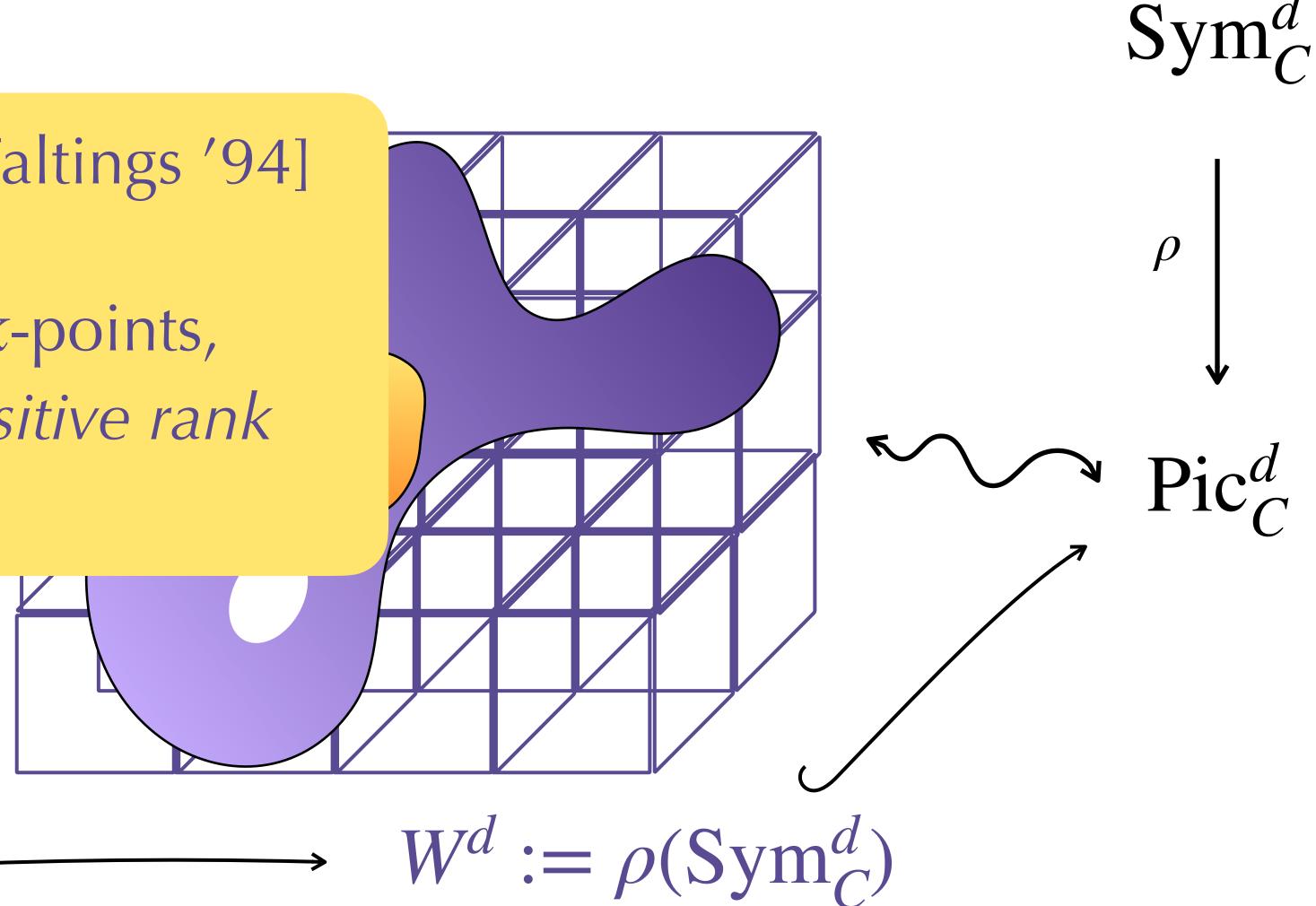
A closed point $x \in C$ is \mathbb{P}^1 -parameterized if any (\Leftrightarrow all)

Assume dim $\rho(Z) > 0$

Mordell-Lang Conjecture [Faltings '94]

If $Y \subset A$ has Zariski dense k-points, then Y is a translate of a positive rank abelian subvariety.

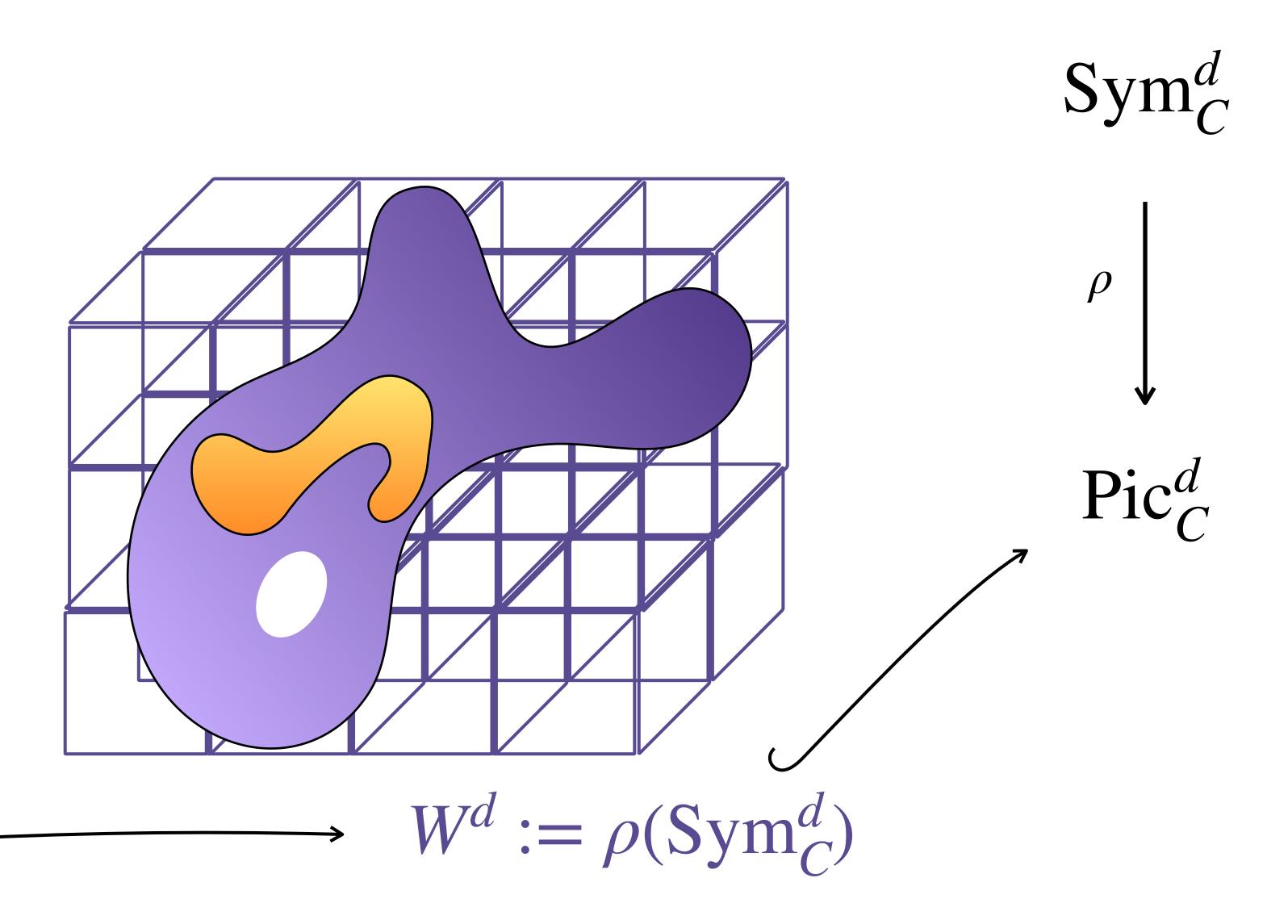
Has Zariski dense *k*-points!



Assume dim $\rho(Z) > 0$

Mordell-Lang Conj. [Faltings '94] $\rho(Z)$ is a positive rank abelian variety

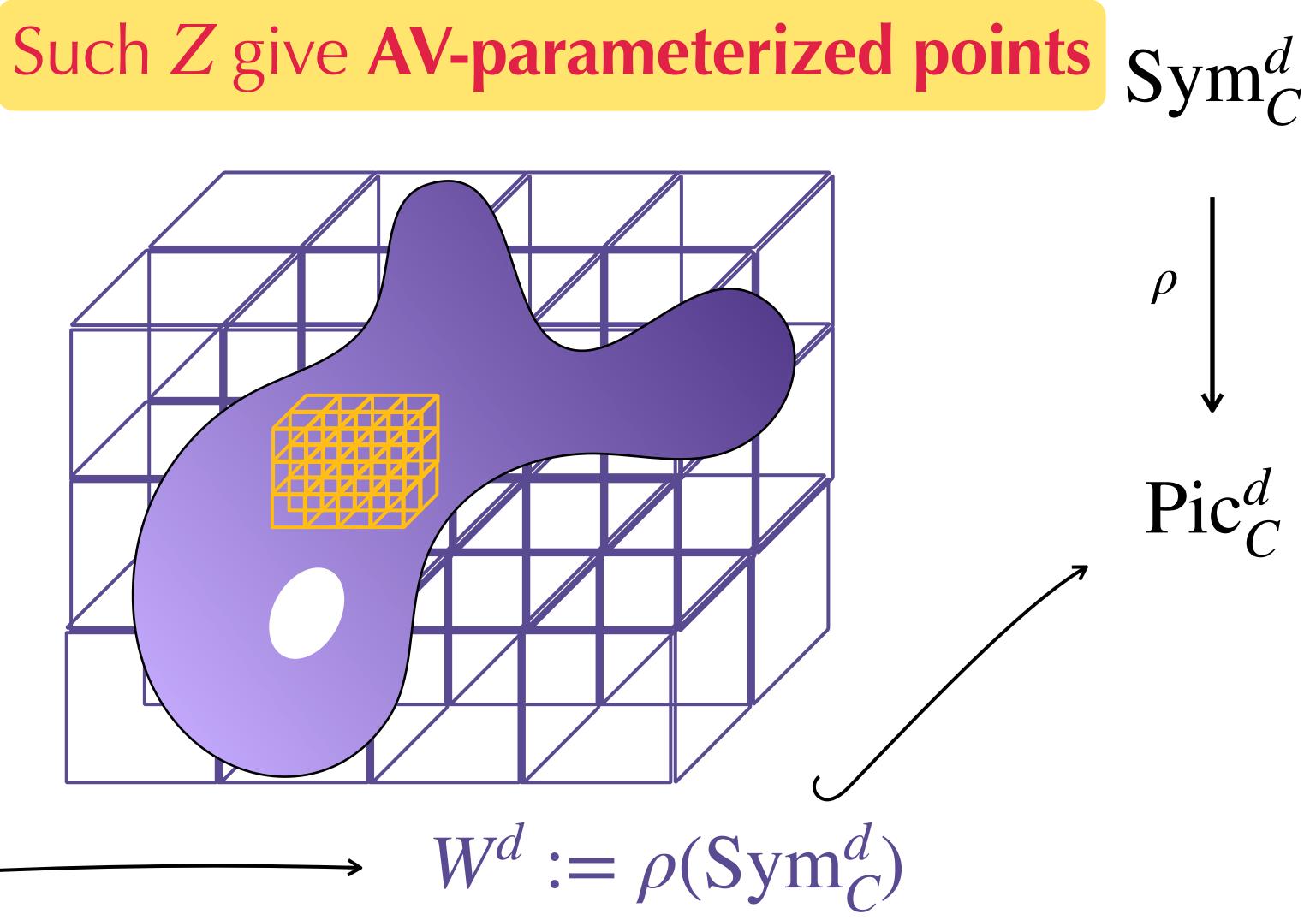
Has Zariski dense *k*-points!



Assume dim $\rho(Z) > 0$

Mordell-Lang Conj. [Faltings '94] $\rho(Z)$ is a positive rank abelian variety

Has Zariski dense *k*-points!

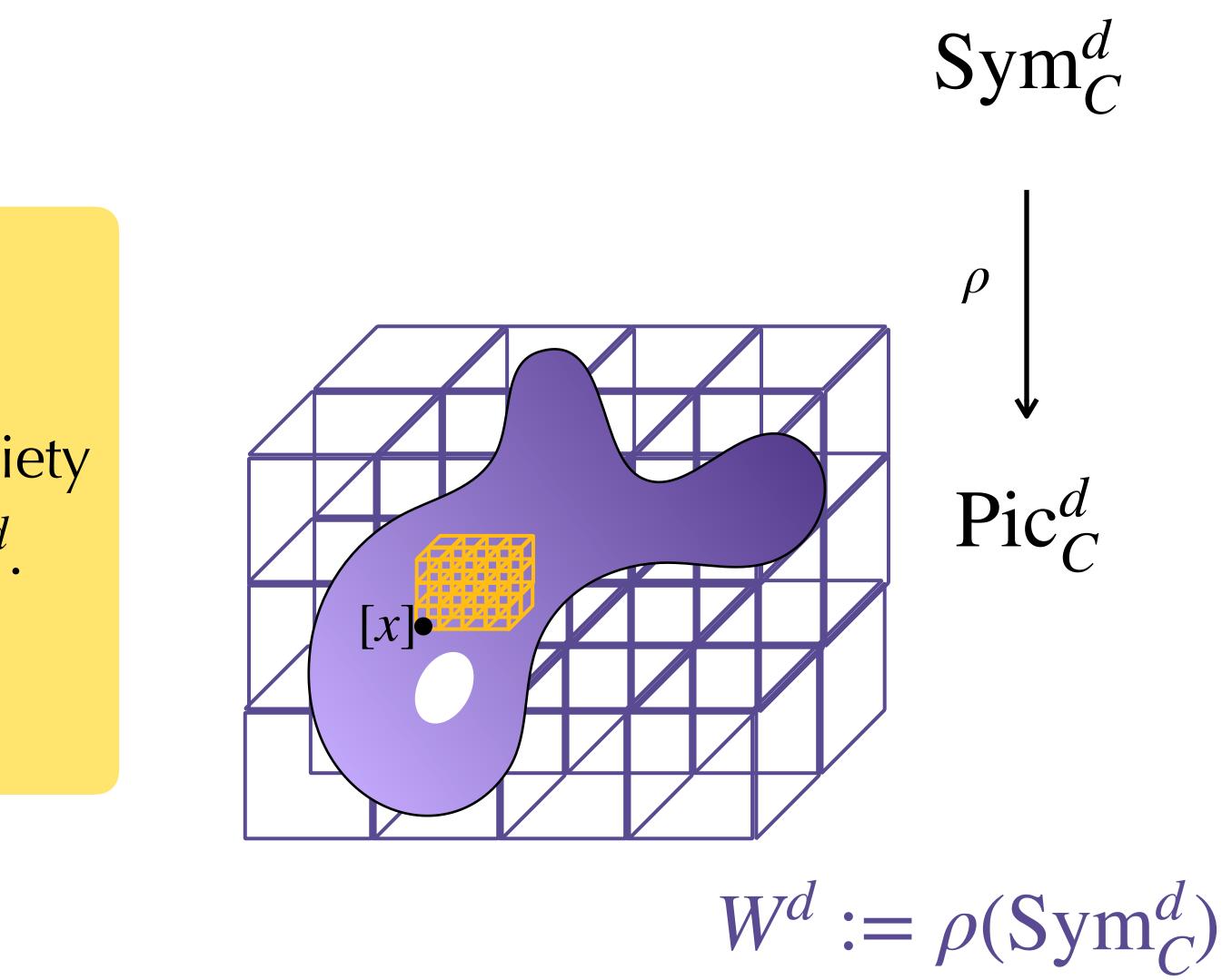


Assume dim $\rho(Z) > 0$

A closed point $x \in C$ is **AV-parameterized**

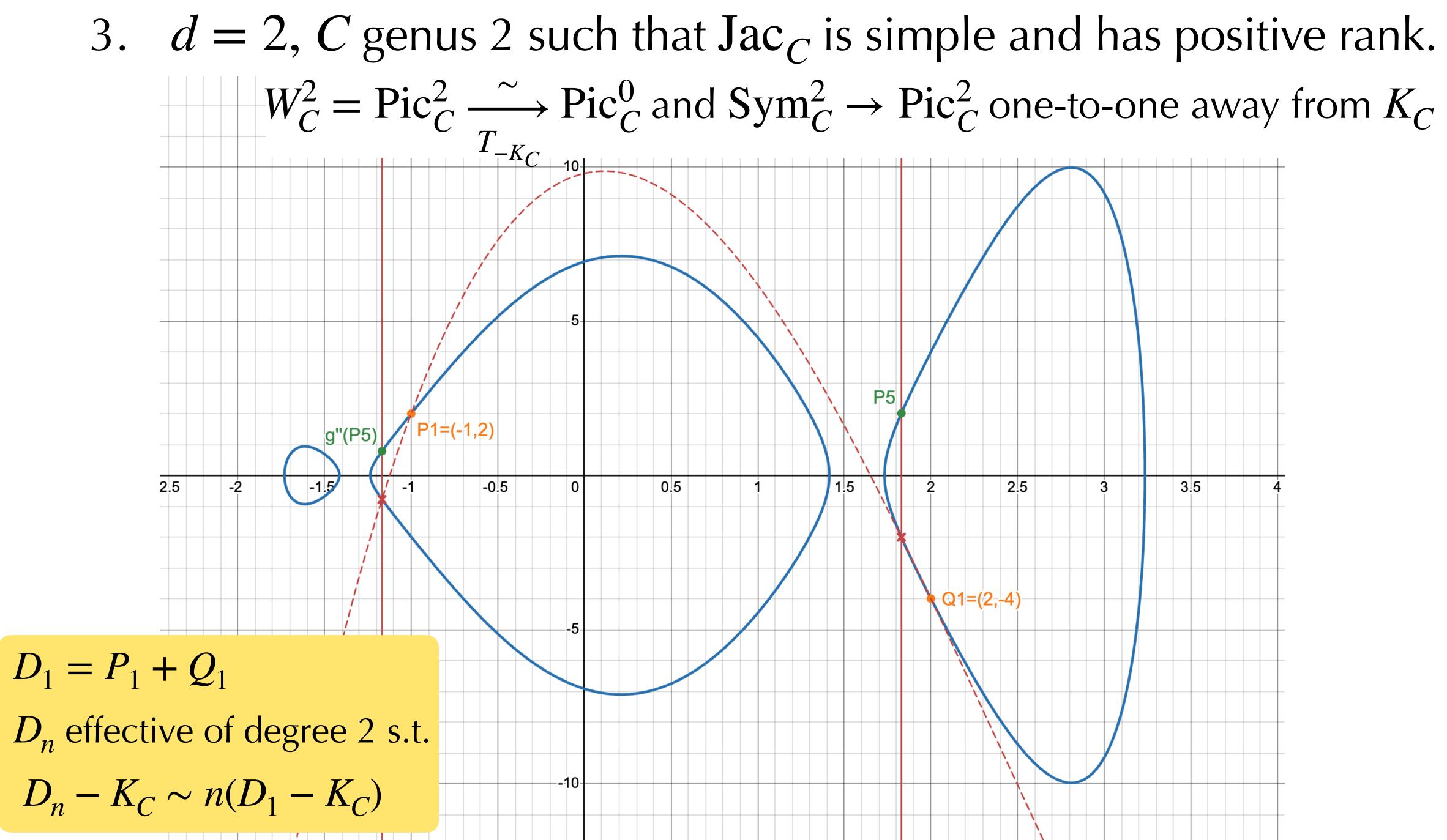
if **∃** a positive rank abelian subvariety $B \subset \operatorname{Pic}^{0}_{C}$ such that $[x] + B \subset W^{d}$.

Otherwise, x is AV-isolated.



Examples of curves with degree d AV-parameterized points

- 1. $C \rightarrow E$ degree d morphism, E positive rank elliptic curve, and $\exists P \in E(k)$ such that C_P irreducible. 2. $C \subset \text{Sym}_{F}^{2}$, E positive rank elliptic curve, $C \sim (d + m)H - mF$ for some $d, m \in \mathbb{N}$, $1 \leq m \leq d$ and $C \cap H_x$ is irreducible for some H_x representing H. [Debarre-Fahlaoui '93; Kadets-Vogt]
- 3. d = 2, C genus 2 such that Jac_C is simple and has positive rank. $W_C^2 = \operatorname{Pic}_C^2 \xrightarrow{\sim} \operatorname{Pic}_C^0$ and $\operatorname{Sym}_C^2 \to \operatorname{Pic}_C^2$ one-to-one away from K_C



 $\delta(C/k) := \left\{ d \in \mathbb{N} : \begin{array}{l} \text{degree } d \text{ points are} \\ \text{Zariski dense on } C \end{array} \right\}$

if... Otherwise, x is \mathbb{P}^1 -isolated.

If $d \in \delta(C/k)$, then \exists positive dim'l $Z \subset \operatorname{Sym}_{C}^{d}$ with Zariski dense k-points

A closed point $x \in C$ is \mathbb{P}^1 -parameterized A closed point $x \in C$ is AV-parameterized if ...

Otherwise, *x* is AV-isolated.

parametrized = \mathbb{P}^1 - OR AV-parametrized isolated = \mathbb{P}^1 - AND AV-isolated

Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019] *Corollary of Faltings' 1994 proof of Mordell-Lang*

Let C/k be a nice curve. 1. $d \in \delta(C/k)$, i.e., the deg

1. *d* ∈ $\delta(C/k)$, i.e., the degree *d* points are Zariski dense on *C* ↓ ∃ degree *d* parameterized point.

parametrized = \mathbb{P}^1 - OR AV-parametrized

isolated = \mathbb{P}^1 - AND AV-isolated

Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019] Corollary of Faltings' 1994 proof of Mordell-Lang Let C/k be a nice curve. 1. $\delta(C/k) = \delta_{\mathbb{P}^1}(C/k) \cup \delta_{AV}(C/k)$, where $\delta_{\mathbb{P}^1}(C/k) := \left\{ \deg(x) : x \in C, \mathbb{P}^1 \text{-parameterized} \right\}$ $\delta_{AV}(C/k) := \left\{ \deg(x) : x \in C, \text{ AV-parameterized} \right\}$

parametrized = \mathbb{P}^1 - OR AV-parametrized

isolated = \mathbb{P}^1 - AND AV-isolated

Properties of $\delta(C/k)$ (see [Viray, Vogt])

Corollaries

- $gon(C/k) \le 2 \min \delta(C/k)$. ([Abramovich, Harris] and [Frey]) • If k'/k is a finite extension, then $\delta(C/k) \subset \delta(C/k')$.

 $\delta_{\mathbb{P}^1}(C/k) := \{ \deg(x) : x \in C, \mathbb{P}^1 \text{-parameterized} \}$

1. $\delta(C/k)$ contains all sufficiently large multiples of $\operatorname{ind}(C/k)$. 2. If $d \in \delta_{AV}(C/k)$ and $n \ge 2$, then $nd \in \delta_{AV}(C/k) \cap \delta_{\mathbb{P}^1}(C/k)$. In particular, $\delta(C/k)$ is closed under multiplication by N.

 $\delta_{AV}(C/k) := \{ \deg(x) : x \in C, AV \text{-parameterized} \}$

Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019] Corollary of Faltings' 1994 proof of Mordell-Lang Let *C*/*k* be a nice curve. 1. $\delta(C/k) = \delta_{\mathbb{P}^1}(C/k) \cup \delta_{AV}(C/k)$, where

 $\delta_{\mathbb{P}^1}(C/k) := \left\{ \deg(x) : x \in C, \ \mathbb{P}^1 \text{-parameterized} \right\}$ $\delta_{\mathrm{AV}}(C/k) := \left\{ \deg(x) : x \in C, \ \text{AV-parameterized} \right\}$ 2. There are finitely many isolated points on *C*. Reveal little about C!

parametrized = \mathbb{P}^1 - OR AV-parametrized

isolated = \mathbb{P}^1 - AND AV-isolated

Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019] Corollary of Faltings' 1994 proof of Mordell-Lang Let *C*/*k* be a nice curve. 1. $\delta(C/k) = \delta_{\mathbb{P}^1}(C/k) \cup \delta_{AV}(C/k)$, where

 $\delta_{\mathbb{P}^{1}}(C/k) := \left\{ \deg(x) : x \in C, \mathbb{P}^{1} \text{-parameterized} \right\}$ $\delta_{\text{AV}}(C/k) := \left\{ \deg(x) : x \in C, \text{AV-parameterized} \right\}$ 2. $\exists \text{ open } U \subset C \text{ s.t. every closed } x \in U \text{ is parameterized.}$

ated Can we understand all parameterized points on C?

param

Can we understand all parameterized points on C?

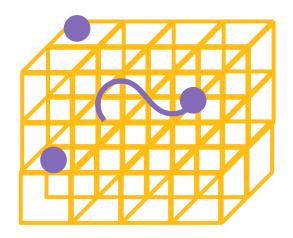
For a fixed degree, parametrized points arise in finitely many families.

Ζ

Fibers with *k*-points are $\simeq \mathbb{P}^N$

As $d \to \infty$, $Z \to A$ is a projective bundle

Families have a well understood geometric structure!



Can we understand all parameterized points on C?

For a fixed degree, parametrized points arise in finitely many families.

Given a parameterized point $x \in C$, how does $\mathbf{k}(x)$ vary in the parameterization?

\mathbb{P}^1 -Given a parameterized point $x \in C$, how does $\mathbf{k}(x)$ vary in the parameterization?

- Meta Theorem [Balçik, Chan, Liu, Viray; in progress] Let $C \xrightarrow{\pi} \mathbb{P}^1$ be a degree d map. If $v \in \Omega_k$ with $\#\mathbb{F}_v > 0$ and let L/k_v be an extension compatible with the geometry of π ,
 - Then there exists a $t \in \mathbb{P}^1(k)$ such that $\mathbf{k}(C_t) \otimes_k k_v$ contains a
 - maximal subfield isomorphic to L.

- Theorem [Balçik, Chan, Liu, Viray; in progress] Let $C \xrightarrow{\pi} \mathbb{P}^1$ be cyclic of degree d & s.t. all ramification points have ram. index d. Then $\forall v \in \Omega_k$ with $\#\mathbb{F}_v > 0$, $\forall f \mid d$, and \forall totally ramified degree d ext'ns L/k_v :
- $\exists t \in \mathbb{P}^1(k)$ such that $\mathbf{k}(C_t)$ has $\frac{d}{f}$ places above v, each with inertia degree f.
- $\exists t \in \mathbb{P}^1(k)$ such that $\mathbf{k}(C_t) \otimes_k k_v \simeq L \Leftrightarrow \mathbb{P}^1(\mathbb{F}_v)$ contains a branch point.

- Theorem [Balçik, Chan, Liu, Viray; in progress] Let $C \xrightarrow{\pi} \mathbb{P}^1$ be a degree d map whose Galois closure is an S_d extension & s.t. all branch points have a unique ramification about with ram. index 2. Then $\forall v \in \Omega_k \text{ with } \#\mathbb{F}_v > 0, \forall (f_i) \vdash d:$
- $\exists t \in \mathbb{P}^1(k)$ such that $\mathbf{k}(C_t)$ is unramified at v with inertia degrees (f_i) .
- $\exists t \in \mathbb{P}^1(k)$ such that $\mathbf{k}(C_t)$ is ramified at $v \Leftrightarrow \mathbb{P}^1(\mathbb{F}_v)$ contains a branch point.
- Furthermore, for any $t \in \mathbb{P}^1(k)$, there is at most one $w \mid v$ that is ramified and it has e(w/v) = 2.

- 1. Classification of curves with a fixed minimum density degree. (see [Harris—Silverman, Abramovich—Harris, Kadets—Vogt])
- 2. Geometric restrictions from low degree parameterized points.
- 3. Galois-theoretic properties in \mathbb{P}^1 and AV-parametrizations. (See [Khawaja—Siksek])
- 4. Uniform bounds for the number of isolated points.
- 5. Variation of residue fields in AV-parametrizations.

Further Directions