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Geometry controls arithmetic!

The Mordell conjecture  (Faltings, 1983)

Let  be a nice curve over a number field .  

If the genus of  is at least 2,  

then  is finite.
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The Mordell conjecture  (Faltings, 1983)

Can we understand the arithmetic of all of C?

:  100 years later

 reveals very little about !C(k) C reveals very little about !C(k) C
Geometry controls arithmetic, yet

C(k) Gal(k/k)
All closed ,x ∈ C

with k(x)
closed x ∈ C a -orbitGal(k/k)

k(x) field of definition of y ∈ C(k) ≃



Can we understand the arithmetic of all of C?

Can we understand all closed points of ?C

The Mordell conjecture: 100 years later

closed x ∈ C a -orbitGal(k/k)
k(x) field of definition of y ∈ C(k) ≃

a Zariski dense set of closed points?…



Can we understand all closed points of ?C

The Mordell conjecture: 100 years later

closed x ∈ C a -orbitGal(k/k)
k(x) field of definition of y ∈ C(k) ≃

Not Zariski dense Zariski dense

C(k)
, C(L) [L : k] < ∞

Visualizations inspired by Hector Pasten

a Zariski dense set of closed points?

Assume genus(C) ≥ 2



Can we understand all closed points of ?C

The Mordell conjecture: 100 years later

closed x ∈ C a -orbitGal(k/k)
k(x) field of definition of y ∈ C(k) ≃

Not Zariski dense Zariski dense

C(k)
{x ∈ C : k(x) ≃ L}

All closed points

??

Visualizations inspired by Hector Pasten

a Zariski dense set of closed points?

Assume genus(C) ≥ 2



 : C y2 = − 2 (x2 − 2) (x2 − 3) (x2 − 2x − 4)

The quadratic points of  are Zariski dense!C

⋯h(x)

⋯



The Mordell conjecture: 100 years later

closed x ∈ C a -orbitGal(k/k)
k(x) field of definition of y ∈ C(k) ≃

Not Zariski dense Zariski dense

C(k)
All closed points

Visualizations inspired by Hector Pasten

Quadratic pts (if : ) C y2 = f(x)

Assume genus(C) ≥ 2

Can we understand a Zariski dense set of closed points?

{x ∈ C : k(x) ≃ L}
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What if  has degree >2?C → ℙ1 d

Hilbert’s Irreducibility Theorem  
The fibers over  that are irreducible are 

Zariski dense on .
ℙ1(k)

C



The Mordell conjecture: 100 years later

Not Zariski dense Zariski dense

C(k)

Visualizations inspired by Hector Pasten

Degree  pts (if )d ∃ deg d C → ℙ1
Quadratic pts (if : ) C y2 = f(x)

All closed points

Can we understand a Zariski dense set of closed points?

Assume genus(C) ≥ 2

{x ∈ C : k(x) ≃ L}



Zariski dense

Degree  pts (if )d ∃ deg d C → ℙ1

Quadratic pts (if : ) C y2 = f(x)

All closed points

δ(C/k) := d ∈ ℕ :
degree  points are 

Zariski dense on 

d
C

Definition The density degree set is

deg( ) : C → ℙ1 C → ℙ1
nonconstant

δℙ1(C/k)

Can this containment be strict?

Lüroth semigroup



 δ(C/k) := d ∈ ℕ :
degree  points are 

Zariski dense on 

d
C

degree  points 

on 

d
C

degree  0-dim’l 

subschemes of 

d
C = Hilbd

C = Symd
C

If d ∈ δ(C/k)

 ⇒
  ∃ positive dim’l  with Zariski dense -pointsZ ⊂ Symd

C k



positive dim’l  with Zariski dense -pointsZ ⊂ Symd
C kWhat are the                                                                                    ?

degree  effective 

divisors on 

d
C =

degree  0-dim’l 

subschemes of 

d
C = Hilbd

C = Symd
C

degree  divisor 

classes on 

d
C Picd

C

ρ



positive dim’l  with Zariski dense -pointsZ ⊂ Symd
C kWhat are the                                                                                    ?

Symd
C

Picd
C

ρ

Z

[D]

 ⊂ |D | ≃ ℙN

ℙ1

↩ ℙ1

 give -parameterized pointsZ = |D | ℙ1
Assume dim ρ(Z) = 0

N ≥ 1



positive dim’l  with Zariski dense -pointsZ ⊂ Symd
C kWhat are the                                                                                    ?

Symd
C

Picd
C

ρ

Z

[D]

 ⊂ |D | ≃ ℙN ↩ ℙ1
Assume dim ρ(Z) = 0

A closed point  is -parameterized if any ( all) 
of the following hold: 

•  with  & ; 

•   whose image contains ; 

• . 

Otherwise,  is -isolated.

x ∈ C ℙ1 ⇔

∃π : C → ℙ1 π(x) ∈ ℙ1(k) deg(π) = deg(x)
∃ ℙ1 ↪ Symd

C x
h0(C, 0(x)) ≥ 2

x ℙ1



positive dim’l  with Zariski dense -pointsZ ⊂ Symd
C kWhat are the                                                                                    ?

Assume dim ρ(Z) > 0 Symd
C

Picd
C

ρ

Wd := ρ(Symd
C)ρ(Z)

Has Zariski dense -points!k

Mordell-Lang Conjecture [Faltings ’94]  

If  has Zariski dense -points, 
then  is a translate of a positive rank 
abelian subvariety.

Y ⊂ A k
Y
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positive dim’l  with Zariski dense -pointsZ ⊂ Symd
C kWhat are the                                                                                    ?

Assume dim ρ(Z) > 0 Symd
C

Picd
C

ρA closed point  is  
AV-parameterized  

if  a positive rank abelian subvariety

 such that . 

Otherwise,  is AV-isolated.

x ∈ C

∃
B ⊂ Pic0

C [x] + B ⊂ Wd

x

Wd := ρ(Symd
C)

[x]



Examples of curves with degree  AV-parameterized pointsd

1.  degree d morphism,  positive rank elliptic curve, and 

 such that  irreducible. 

2. ,  positive rank elliptic curve,  

for some ,  and  is irreducible for 

some  representing . 

3.   genus 2 such that  is simple and has positive rank.

C → E E
∃P ∈ E(k) CP

C ⊂ Sym2
E E C ∼ (d + m)H − mF
d, m ∈ ℕ 1 ≤ m ≤ d C ∩ Hx

Hx H

d = 2, C JacC

[Debarre-Fahlaoui ’93; Kadets-Vogt]

 and  one-to-one away from W2
C = Pic2

C
∼

T−KC

Pic0
C Sym2

C → Pic2
C KC



some  representing . 

3.   genus 2 such that  is simple and has positive rank.d = 2, C JacC

 

 effective of degree 2 s.t. 

 

D1 = P1 + Q1
Dn

Dn − KC ∼ n(D1 − KC)

 and  one-to-one away from W2
C = Pic2

C
∼

T−KC

Pic0
C Sym2

C → Pic2
C KC



 δ(C/k) := d ∈ ℕ :
degree  points are 

Zariski dense on 

d
C

If , thend ∈ δ(C/k)   ∃ positive dim’l  with Zariski dense -pointsZ ⊂ Symd
C k

A closed point  is -parameterized  
if… 

Otherwise,  is -isolated.

x ∈ C ℙ1

x ℙ1

A closed point  is AV-parameterized  
if … 

Otherwise,  is AV-isolated.

x ∈ C

x

parametrized = -  OR  -parametrized                                 

    isolated     = - AND -isolated

ℙ1 AV
ℙ1 AV



Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019] 
Corollary of Faltings’ 1994 proof of Mordell-Lang

Let /  be a nice curve.  

1. , i.e., the degree  points are Zariski dense on   

                  degree  parameterized point.

C k
d ∈ δ(C/k) d C

∃ d

⇔
parametrized = - OR -parametrized                                isolated = - AND -isolatedℙ1 AV ℙ1 AV



Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019] 
Corollary of Faltings’ 1994 proof of Mordell-Lang

Let /  be a nice curve.  

1. , where 

                

C k
δ(C/k) = δℙ1(C/k) ∪ δAV(C/k)

parametrized = - OR -parametrized                                isolated = - AND -isolatedℙ1 AV ℙ1 AV

    : , -parameterizedδℙ1(C/k) := deg(x) x ∈ C ℙ1

    : , AV-parameterizedδAV(C/k) := deg(x) x ∈ C



                             Properties of          (see [Viray, Vogt])δ(C/k)
1.  contains all sufficiently large multiples of . 

2. If  and , then . 

            In particular,  is closed under multiplication by .

δ(C/k) ind(C/k)
d ∈ δAV(C/k) n ≥ 2 nd ∈ δAV(C/k) ∩ δℙ1(C/k)

δ(C/k) ℕ

 {  : , -parameterized}δℙ1(C/k) := deg(x) x ∈ C ℙ1  {  : , -parameterized}δAV(C/k) := deg(x) x ∈ C AV

Corollaries 

• . ([Abramovich, Harris] and [Frey]) 
• If  is a finite extension, then .

gon(C/k) ≤ 2 min δ(C/k)
k′ /k δ(C/k) ⊂ δ(C/k′ )



Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019] 
Corollary of Faltings’ 1994 proof of Mordell-Lang

Let /  be a nice curve.  

1. , where 

2. There are finitely many isolated points on .

C k
δ(C/k) = δℙ1(C/k) ∪ δAV(C/k)

C

parametrized = - OR -parametrized                                isolated = - AND -isolatedℙ1 AV ℙ1 AV

    : , -parameterizedδℙ1(C/k) := deg(x) x ∈ C ℙ1

    : , AV-parameterizedδAV(C/k) := deg(x) x ∈ C

Reveal little about !C



Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019] 
Corollary of Faltings’ 1994 proof of Mordell-Lang

Let /  be a nice curve.  

1. , where 

2.  open  s.t. every closed  is parameterized.

C k
δ(C/k) = δℙ1(C/k) ∪ δAV(C/k)

∃ U ⊂ C x ∈ U
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Can we understand all parameterized points on ?C

For a fixed degree, parametrized points arise in finitely many families.

or

Fibers with -points are k ≃ ℙN

Families have a well 
understood geometric 

structure!

as a scheme, i.e., with k(x)

Z

As ,  is a projective bundled → ∞ Z → A



Can we understand all parameterized points on ?C

For a fixed degree, parametrized points arise in finitely many families.

Given a parameterized point ,  

how does  vary in the parameterization?

x ∈ C
k(x)



Given a parameterized point ,  

how does  vary in the parameterization?

x ∈ C
k(x)

Meta Theorem [Balçik, Chan, Liu, Viray; in progress]
Let  be a degree  map. 

If  with  and let  be an extension 

compatible with the geometry of , 

Then there exists a  such that  contains a 

maximal subfield isomorphic to .

C π ℙ1 d
v ∈ Ωk #7v > > 0 L/kv

π
t ∈ ℙ1(k) k(Ct) ⊗k kv

L

-ℙ1



Theorem [Balçik, Chan, Liu, Viray; in progress]

Let  be cyclic of degree  & s.t. all ramification points have ram. index . 
Then 

  with ,  , and  totally ramified degree  ext’ns : 

•  such that  has  places above , each with inertia degree . 

•   such that      contains a branch point.

C π ℙ1 d d

∀ v ∈ Ωk #7v > > 0 ∀ f |d ∀ d L/kv

∃t ∈ ℙ1(k) k(Ct)
d
f

v f

∃ t ∈ ℙ1(k) k(Ct) ⊗k kv ≃ L ⇔ ℙ1(7v)



Theorem [Balçik, Chan, Liu, Viray; in progress]

Let  be a degree  map whose Galois closure is an  extension &  

s.t. all branch points have a unique ramification about with ram. index 2. Then 

  with ,  : 
•  such that  is unramified at  with inertia degrees . 

•   such that  is ramified at     contains a branch point. 

• Furthermore, for any , there is at most one  that is ramified and it 
has .

C π ℙ1 d Sd

∀ v ∈ Ωk #7v > > 0 ∀ ( fi) ⊢ d
∃t ∈ ℙ1(k) k(Ct) v ( fi)
∃ t ∈ ℙ1(k) k(Ct) v ⇔ ℙ1(7v)

t ∈ ℙ1(k) w |v
e(w/v) = 2



Further Directions

1. Classification of curves with a fixed minimum density degree. 
(see [Harris—Silverman, Abramovich—Harris, Kadets—Vogt]) 

2. Geometric restrictions from low degree parameterized points. 

3. Galois-theoretic properties in - and AV-parametrizations.     
(See [Khawaja—Siksek]) 

4. Uniform bounds for the number of isolated points. 

5. Variation of residue fields in AV-parametrizations.

ℙ1


