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The Mordell conjecture

Let C be a nice curve over a number field k.

If the genus of C is at least 2,
then C(k) is finite.

Geometry controls arithmetic!



The Mordell conjecture (Faltings, 1983)

Let C be a nice curve over a number field k.

If the genus of C is at least 2,
then C(k) is finite.

What does this say about the arithmetic of C?



The Mordell conjecture (Faltings, 1983)

Let C be a nice curve over a number field k.
If the genus of C is at least 2,
then C(k) is a proper Zariski closed subset.

What does this say about the arithmetic of C?



Mordell Coni. If the genus of C is at least 2,

then C(k) is a proper Zariski closed subset.

What does this say about the

arithmetic of C?¢ 7
C(k) reveals very little about C?!




The Mordell conjecture:

Geometry controls arithmetic, yet
C(k) reveals very little about C'!

Can we understand the arithmetic of all of C?
~__ —
All closed x € C,

. Ck _
with K(x) ( )D Gal(k/k)

closed x € C —— a Gal(k/k)-orbit
k(x) <« field of definition of y € C(E)/N



The Mordell conjecture:

Can we understand the arithmetic of all of C?

Can we understand all closed points of C?

...a Zariski dense set of closed points?

closed x € C < a Gal(k/k)-orbit
k(x) < field of definition of y € C(k)..



The Mordell conjecture: 700 years later

Can we understand a Zariski dense set of closed points?

. Assume genus(C) 2 2

Not Zariski dense ariski dense

closed x € C < a Gal(k/k)-orbit
k(x) < field of definition of y € C(%/g

Visualizations inspired by Hector Pasten



The Mordell conjecture: 700 years later

Can we understand a Zariski dense set of closed points?

_ Assume genus(C) 2 D
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ot Zariski dense ariski dense

closed x € C < a Gal(k/k)-orbit
k(x) < field of definition of y € C(%/z

Visualizations inspired by Hector Pasten
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The quadratic peints of C are Zariski dense!
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100 years later

The Mordell conjecture
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Can we understand a Zariski dense set of closed po
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k(x) < field of definition of y € C(k)/z
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What if C = P! has degree d>2?
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What if C = P! has degree d>2?

P i —

Hilbert’s Irreducibility Theorem
The fibers over P!(k) that are irreducible are

Zariski dense on C.
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The Mordell conjecture:

Can we understand a Zariski dense set of closed points?

Assume genus(C) > 2

All closed points

C(k) Quadratic pts (if C: y* = f(x))

€ € k(x) = L} Degree d pts (if 3 degd C — |

Not Zariski dense Zariski dense

Visualizations inspired by Hector Pasten



Detfinition The density degree set is

Zariski dense on C

degree d points are
o(Clk) := 1 d e N :

«—— Can this containment be strict?

{deg(c S phi €= P 3 All closed points

“nhonconstant
|

Liroth sSSNAIS Degree d pts (if 3 degd C — P!
Op1(CTE)

adratic pts (if C: y* = f(x))

Zariski dense



Zariski dense on C

o(Clk) = {de N

degree d points degree d O-dim’l oy ;
on C ( subschemes of € | = HIbC = Symc

degree d points are %

Itd € o(C/k)
|

7 positive dim’l Z C Sym‘é with Zariski dense k-points



What are the positive dim’l Z C Sym‘é with Zariski dense k-points ?

subschemes of C

| p

{ degree d divisor %

divisors on C

degree d effective degree d O0-dim’l
= = Hilb% = Sym&

- d
classes on C Pic



What are the positive dim’l Z C Sym”é with Zariski dense k-points ?

Assume dim p(Z) = 0 Z = |D|give P!-parameterized points

d
Z|D| ~ PN o P! Sym(.

N> 1 \

o [D]




What are the positive dim’l Z C Sym‘é with Zariski dense k-points ?

Assume dim p(Z) = 0
ZC |D| ~PY e P! Sym&.

A closed pointx € Cis | 1-parameterized if any (<all)
of the following hold:
e An: C — P! with n(x) € Pl(k) & deg(n) = deg(x);
e 1P & Sym‘é whose image contains Xx;

e h(C, O(x)) > 2.

o | . .d
D] | PICC

Otherwise, x is P -isolated.



What are the positive dim’l Z C Sym”é with Zariski dense k-points ¢

Mordell-Lang Conjecture [Faltings "94]

- d

Assume dim p(Z) > 0 Symc
D

If Y C A has Zariski dense k-points,

then Y is a translate of a positive rank e |

abelian subvariety . AA.%-' e Plccé

/1 V
IV'V

.\ . ¥ /

Has Zariski dense k-points!
C > Wé = p(Sym‘é)




What are the positive dim’l Z C Sym”é with Zariski dense k-points ¢

Assume dim p(Z) > 0 Sym‘é
Mordell-Lang Coni.
[Faltings "94] p
\
p(Z) is a positive
rank abelian variety Piccé

Has Zariski dense k-points!

.




What are the positive dim’l Z C Sym”é with Zariski dense k-points ¢

- Such Z give AV-parameterized points d
Assume dim p(Z) > 0 5 P P Symc

Mordell-Lang Conj. {4
[Faltings "94] /| & p
I g . A
p(Z) is a positive

rank abelian variety

Has Zariski dense k-points!

.




What are the positive dim’l Z C Sym‘é with Zariski dense k-points ¢

: d
Assume dim p(Z) > 0 Symc

A closed pointx € Cis

AV-parameterized

if 4 a positive rank abelian subvariety
B C Pic% such that [x] + B ¢ W<

Otherwise, x is AV-isolated.




Examples of curves with degree d AV-parameterized points

1. C — E degree d morphism, E positive rank elliptic curve, and
1P € E(k) such that Cp irreducible.

2. C C Symz, E positive rank elliptic curve, C ~ (d + m)H — mF
forsomed,m € N, 1 <m < dand CnN H,_is irreducible for
some H_representing H. [Debarre-Fahlaoui '93; Kadets-Vogt]

3. d =72, Cgenus 2 such that Jac is simple and has positive rank.

2 _ pic2 " Ppied 2 2
Wz = Pic, — Pic and Symg . — Picg. one-to-one away from K-

T .



3. d =72, Cgenus 2 such that Jac is simple and has positive rank.

2 _pic2 "~ Pl 2 2
Wz = Pic;, — Pic and Sym;. — Pic. one-to-one away from K-

I
% 10

2.5 -2

D, =P+ 0,
D, effective of degree 2 s.t.
Dn — KC ~ n(Dl — Kc) 1° \

I ;] | | _ _ \




Zariski dense on C

degree d points are
o(Clk) .= { de N :

it d € 6(C/k), then 3 positive dim’l Z C Sym‘é with Zariski dense k-points

A closed point x € C is P'-parameterized A closed point x € C is AV-parameterized
if... if ... -

- 9

Otherwise, x is P! isolated. Otherwise, x is AV-isolated.

parametrized = P!'- OR AV-parametrized
isolated = P!~ AND AV-isolated




Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019]
Corollary of Faltings” 1994 proof of Mordell-Lang

et C/k be a nice curve.

1. de€ o(Clk), i.e., the degree d points are Zariski dense on C
)

1 degree d parameterized point.

parametrized = P1- OR AV-parametrized isolated = P!- AND AV-isolated



Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019]
Corollary of Faltings” 1994 proof of Mordell-Lang

et C/k be a nice curve.

1. o(C/k) = opi(C/k) U 0py(C/k), where
opi(C/k) = {deg(x) . x € C, [Dl-parameterized

Oav(Clk) 1= {deg(x) . x € C, AV—parameterized%

parametrized = P1- OR AV-parametrized isolated = P!- AND AV-isolated



Properties of 0(C/k) (see [Viray, Vogt])

1. o(C/k) contains all sufficiently large multiples of ind(C/k).

2. Iftd € o),y(C/k) and n > 2, then nd € 0,v(C/k) N 0pi(C/k).
In particular, 0(C/k) is closed under multiplication by N.

Corollaries
* gon(C/k) < 2mino(C/k). ([Abramovich, Harris] and [Frey])
* If K'/k is a finite extension, then o(C/k) C o(C/k").

Spi(Clk) := {deg(x) : x € C, Pl-parameterized} Oav(Clk) := {deg(x) : x € C, AV-parameterized}



Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019]
Corollary of Faltings” 1994 proof of Mordell-Lang

et C/k be a nice curve.

1. o(C/k) = opi(Clk) U 0,v(C/k), where
opi(C/k) = {deg(x) . x € C, [Dl-parameterized%
Oav(C/k) = {deg(x) . x € C, AV—parameterized%

2. There are finitely many\lsolated points OEE. Reveal little about €

parametrized = P1- OR AV-parametrized isolated = P!- AND AV-isolated



Theorem [Bourdon, Ejder, Liu, Odumodu, Viray 2019]
Corollary of Faltings” 1994 proof of Mordell-Lang

et C/k be a nice curve.

1.

2.

pararm

o(C/k) =0

2(CTK) U 8,(CTk), where

opi(C/k) = {deg(x) . x € C, [Dl-parameterized%

Oav(C/k) = {deg(x) : x € C, AV-parameterized

1 open U C C st every closed x € U is parameterized.

Can we understand all parameterized points on C?  ated



as a scheme, i.e., with K(x) ™\
Can we understand all parameterized points on C?

For a fixed degree, parametrized points arise in finitely many families.

Families have a well

:

understood geometric
/

structure!
A
lz.ﬂ.ll.i
a4l | "4
’VA=VA=!I’7
gt g
Fibers with k-points are ~ PV N .
Asd — 00, Z — A is a projective bundle (DXl or



Can we understand all parameterized points on C?

For a fixed degree, parametrized points arise in finitely many families.

Given a parameterized point x € C,

how does K(x) vary in the parameterization?



Pl
Given a parameterized point x € C,

how does K(x) vary in the parameterization?

Meta Theorem [Balcik, Chan, Liu, Viray; in progress]

Let C S P! be a degree d map.
if v € Q with #F, > > 0 and let L/k, be an extension

compatible with the geometry of r,
Then there exists a ¢ € P'(k) such that K(C,) ®, k, contains a

maximal subtfield isomorphic to L.



Theorem [Balcik, Chan, Liu, Viray; in progress]

Let C 5 P! be cyclic of degree d & s.t. all ramification points have ram. index d.
Then

VveQ with#F > >0,V f|d and V totally ramified degree d ext'ns L/k;

d
o Jt € P(k) such that K(C,) has — places above v, each with inertia degree f.

f
* J¢te P(k) such that K(C)®, k,~L < | 1([I:V) contains a branch point.




Theorem [Balcik, Chan, Liu, Viray; in progress]

let C S |

I'be a degree d map whose Galois closure is an S, extension &

s.t. all branch points have a unique ramification about with ram. index 2. Then

Vve Q with#F, > >0,V (f) F d

* drel

L(k) such that K(C)) is unramified at v with inertia degrees ().

* drel

L(k) such that K(C)) is ramified atv & | 1([I:V) contains a branch point.

* Furthermore, for any t € P!(k), there is at most one w | v that is ramified and it
has e(w/v) = 2.



Further Directions

1. Classification of curves with a fixed minimum density degree.
(see [Harris—Silverman, Abramovich—Harris, Kadets—Vogt])

2. Geometric restrictions from low degree parameterized points.
1

3. Galois-theoretic properties in |
(See [Khawaja—Siksek])

- and AV-parametrizations.

4. Uniform bounds for the number of isolated points.

5. Variation of residue fields in AV-parametrizations.



